A Viable Energy Strategy for the Nordic Countries 2006 - 2030

A viable investment budget for the renewal and consolidation of the energy resource base, the reduction of CO_2 emission, and the phasing out of nuclear power

> Paper prepared for Greenpeace Nordic by Klaus Illum February 2006

Summary

This paper presents the results of the application of a general energy systems analysis method in a study of technological and economic ways and means for the initiation of the transition to a viable Nordic energy system.

The main results are summarised as reductions in fossil fuel consumption and CO_2 emission obtainable by the implementation of well-coordinated investment programmes in the different parts of the Nordic energy system, comprising Norway, Sweden, Finland, and Denmark.

Under certain assumptions as to quantitative growth parameters, a fictive "business-as usual" or "baseline" scenario (A) is compared with a viable scenario (B), in which comprehensive investment programmes are implemented in order to meet the Nordic countries' obligations to reduce CO_2 emission and to phase out nuclear power generation at the same time.

Economic costs assessments are made under different assumptions as to future fossil fuel prices. The results of these assessments strongly indicate that the renewal and consolidation of the energy resource base required to sustain the Nordic welfare societies does not impose economic costs which restrain other economic activities. On the contrary, there is reason to fear that other economic activities will be severely restrained if the Nordic economy remains strongly dependent on oil and gas supplies until the global production of these fuels can no longer meet the global demand. The CO_2 emission reduction comes as a corollary to security of energy supply.

The more efficient utilization of electric power provided by existing hydropower stations and a strongly growing windpower capacity renders nuclear power superfluous in the B-scenario.

The physical reality cannot be ignored in energy policy making. A strategy for the safeguarding of the welfare society's energy resource base and the mitigation of environmental impacts and hazards caused by fossil fuel consumption and nuclear power must rely on consistent information of physically and technologically possible options. Therefore, if the strategy outlined in this paper is dismissed, another feasible strategy which demonstrably meets the political objectives in a least-cost manner must be presented as a better alternative. The laissez-faire argument that "This is not what we want, but we can't concretely specify what is needed - the market will find out" does not express a rational approach to the problems to be solved.

Contents:

1.	Introduction
2.	The physical modelling of the Nordic energy system
3.	Economic costs
4.	Limits to growth
5.	Future fuel prices
6.	The fictive baseline scenario A
7.	A viable investment programme. Scenario B
8.	Nuclear power
9.	Hydropower
10.	Large investments in the end-use sector
11.	Lower utilization of investments in cogeneration stations
12.	No separate electricity sector
13.	Motive power for transportation
14.	From electric power to mechanical shaft power in vehicles
15.	Electric power transmission between the Nordic countries
16.	CO ₂ emission reduction
17.	No general specific CO ₂ emission reduction factors
18.	In search of a least-cost strategy for the common good
19.	A first approximation to a viable energy strategy for the Nordic countries

All graphs and tables are compiled in section 19, at the beginning of which a list of its contents is found. There are two reasons for this. First, it makes is easier to find graphs and tables to which references are made in several text sections. Second, the documentation provided in the array of graphs and tables shows in the several dimensions the changes taking place from 2005 to 2030 in the scenario (scenario B) described in the text sections and also the main differences between this scenario and the "baseline scenario" (scenario A). Thus, the array of graphs and tables which show the changes taking place in scenario B may be read as the numerical mapping of the transition of the energy system from its presents state towards a future viable state.

The last table (table 19) summarizes the net results in terms of the CO_2 emission reductions obtained in the B-scenario.

1. Introduction

Our economy is based on wasteful segregated energy and transportation systems developed during half a century where cheap oil was in abundant supply and CO₂ emission constraints were non-existent. Now we are confronted with an enormous challenge of technical and social engineering, namely the accomplishing of the transition to an economy based on the efficient utilization of limited and costly energy sources. This study is concerned mainly with ways and means to meet the technical engineering challenge. The social engineering of the proper conditions for the implementation of appropriate technical solutions - in terms of public participation, political consensus, planning and financing - has cultural and ideologic implications concerning the strive for the common good in the longer term as against the mere strive for here-and-now economic growth by any means. Only one of these social issues is addressed, namely in a specific critical note on the electricity market (section 12). However, without the analysis and presentation of feasible technological development strategies, there is no basis for a public discussion of alternative approaches which could lead to political consensus on the establishing of the proper social conditions for the implementation of an appropriate strategy.

Together the Nordic countries have renewable energy potentials unmatched by any other region with a similar population density. Hydropower plants produce about 200 TWh/year and windy coastlines and plateaus make the utilization of windpower on a large scale economically feasible. Moreover, substantial amounts of wood and straw are available on a sustainable basis.

Therefore, if the Nordic welfare societies cannot be sustained on the basis of mainly renewable energy resources there is little hope for the development of sustainable energy resource bases for other industrialised regions.

Presently, the Nordic countries, in addition to hydropower and biomass, use large amounts of coal, oil, natural gas and also nuclear power to sustain the functioning of their societies. The reason for this is that low fuel and electricity prices have allowed a generally inefficient and wasteful use of energy resources. The economy has been optimized under the conditions set by low fuel and electricity prices and the absence of CO_2 emission constraints. Now, however, the optimization criteria change because of growing fuel costs and CO_2 constraints. Moreover, it must be taken into account that it is unlikely that oil and gas will be in ample supply in the next decades. And it is questionable for how long fissionable nuclear fuel will be in ample supply at the present price level.

Under these new economic and environmental optimization criteria the present Nordic energy system is far from optimal. In order to examine ways and means for the transition to a new energy system which approximates an economic and environmental optimum under the new criteria, Nordic Greenpeace commissioned the study presented in this paper. The study is based on a SESAM¹ model of the Nordic energy system. SESAM is a generic multi-scenario model which facilitates the comparative analysis of a wide spectrum of alternative scenarios for the future development of the energy system in question. The model represents the energy system in the form of a database containing the physical, structural and economic specifications of the components of the system and time-series data which specify alternative future changes in the system properties.

The database for the Nordic energy system was prepared by Greenpeace appointees in collaboration with the author of this paper. Among a series of scenarios examined, one scenario, here called scenario B, was selected for comparison with the fictive "business-as-usual" or "baseline" scenario, scenario A, in which no technological improvements take place except the natural replacement of old electrical appliances by new, more energy-efficient models.

The outcome of the study is presented in commented graphs and tables which summarise the assumptions made and the results which can be achieved by the implementation of the investment programme specified for scenario B. These graphs and tables are arranged in the last section of this paper, section 19. Together they constitute an appropriate framework for the presentation of an energy strategy in the form of a long-term energy investment budget for public discussion and political consideration. Other scenarios can be presented for comparison within the same framework.

Moreover, additional tables and graphs for sensitivity analyses and comparative analyses of alternative strategies can be displayed. For example, table 17 shows the results of a sensitivity analysis based on the comparison of scenario B with scenarios in which 1) electricity consumption, 2) power generation in windmills, and 3) power generation in hydropower stations, respectively, is marginally changed. In table 18, main results of scenario B are compared with main results of a scenario in which a stronger growth in energy consuming hardware takes place.

In the following sections 2 and 3 the physical modelling of the Nordic energy system and the method used for the assessment of economic costs is briefly described. Thereupon, with references to the graphs and tables in section 19, the Assenario and the particulars of the changes taking place in the B-scenario are commented on in the sections 4 thru 18.

2. The physical modelling of the Nordic energy system

The model consists of a database which contains (a) data common to the system as a whole and (b) four database sections containing data for each of the four countries. Norway and Sweden are subdivided into three climatic zones: south, mid,

¹ The methodology is described in

Klaus Illum: SESAM The Sustainable Energy Systems Analysis Model. Aalborg University Press, 1995.

The application of the SESAM model to the Nordic energy system is described in the compendium: *A SESAM Model of the Nordic Energy System. Methodology and the modelling of the Nordic Energy System.* Greenpeace 2006. By Klaus Illum

north, and Finland is subdivided into a north and a south climatic zone. Denmark is one zone.

Based on the specifications given in the database, the SESAM programs firstly compute the end-use demand for heat and electricity in buildings and industries as well as the motive power needed for transportation by the different means of transport. Thereupon, the energy flows from *1*) the system of energy sources (fossil fuels; biomass fuels; nuclear power stations; hydropower stations; windmills; etc.) through *2*) the energy conversion and transmission system (power and cogeneration plants, some with biogas plants; boilers; electrochemical converters; etc.) to *3*) the end-use system are computed in accordance with the geographic, structural, technical and quantitative specifications given in the database registers. To take into account the climatic and other variations in the annual cycle, the computations are performed month by month and reiterated year by year as the system undergoes structural, technical and behavioural changes. In order to assess the capacities required in the different energy conversion units, energy flow balances are concurrently computed on a diurnal basis with 15 minute intervals.

The SESAM documentation programs provide documentation of results at all levels of detail: Summaries and overviews as well as particular results for any part of the system.

For each zone the database contains a building register specifying the properties of the different types of buildings, the different types of individual and collective energy conversion units presently in use (boilers, cogeneration units, power stations, etc.), and industrial production plants.

Thus, although the degree of detail and accuracy of the data presently available does not warrant the modelling of the Nordic energy system in great detail, the database structure is prepared for the more detailed and accurate specifications of the system properties. As it is, the specifications have been calibrated against the more aggregated data available for each country.

This means that although not all the data contained in the particular database records for buildings, electrical appliances etc. are based on available statistics, and the geographical structuring of district heat supply is not specified in any detail, the calibrated database represents four energy systems with properties which closely resemble those of the four Nordic countries.

Regarding electric power transmission, the Nordic energy systems is modelled as one system in which all power generating units and all consumers are connected to the same grid. The power transmission capacities needed are assessed as described in section 15. Electric power transmission between the Nordic countries and their neighbouring countries is restricted to a small percentage of the power generation within the system, meaning that the Nordic energy system is modelled as a relatively closed system. This is because there is no basis for the assessment of the CO_2 emission effects of a relatively large power transmission across the system boundary.

3. Economic costs

The database contains an economic cost register consisting of "price tags" for the different types of investment items. A "price tag" is a record of specific investment

and maintenance costs for a particular type of physical unit - e.g. fuel-fired power generation or cogeneration units of a certain type, a type of boilers, heat pumps, windmills, biogasplants, etc. - or another kind of investment item. In addition to specific costs, a "price tag" specifies the technical lifetime and the interval between major overhauls (re-investments) for the type of investment item referred to.

Costs of energy conversion units and power generating energy sources are specified as per MW of installed capacity. Costs of district heat connections, central heating installations, etc. in buildings are specified as per square metre of floor area for larger and smaller buildings respectively. Costs of reductions of net heat consumption in buildings of a certain category (improved heat insulation, heat recovery, etc.) are specified per square metre of heated floor area as a function of the reduction obtained.

The costs specified in a "price tag" are valuated by market prices (without taxes and duties), assuming that the market prices reflect social costs in terms of labour and natural resources which could alternatively be used for the accomplishing of other activities (the so-called *opportunity costs*)².

When, in a particular scenario, the time-series of future physical changes occurring in the system have been computed, the program generates a file of records which specify the time-series of changes in each particular unit or object (e.g. new cogeneration capacity of a particular type of unit; new windpower capacity of a particular type of on-shore or off-shore windmill; reduced heat loss in a particular type of building; etc.). Thereupon, the economic costs are computed year by year by the matching of each of the physical changes to the "price tag" for the particular investment involved, adding the costs of maintenance and re-investments for all the units in operation in each year.

Fuel costs are computed on the basis of the computed fuel consumption and the price specifications for the different types of fuels (see table 12).

It is important to point out that because of the uncertainties of future market price assessments and because it is questionable to which extent the market prices of goods reflect the real opportunity costs, the computed costs should be considered only a measure to be used for the comparison of different scenarios. Considering that the total costs result for a particular scenario is computed as the sum of a large number of cost items, each of which is somewhat inaccurate plus/minus, there is reason to expect that a significant difference between the computed total costs for two scenarios indicates a real significant cost difference, whereas a relatively small difference indicates that the two scenarios are practically equivalent regarding economic costs.

Moreover, the opportunity costs only partly account for the total costs of energy supply and consumption to be borne by the society as a whole. The external costs to

² Social costs of economic activities have two different sets of components: (1) the so-called *opportunity costs*, i.e. the costs in terms of labour and natural resources which could alternatively be used for the accomplishing of other activities; and (2) the so-called *external costs*. These are the costs assigned to any loss of welfare or increase in costs which the activities cause to any individual or firm in the economy, i.e. to the society as whole.

be assigned to environmental degradation, resource depletion and other effects resulting from activities directly or indirectly related to energy supply and consumption cannot be assessed to any degree of accuracy in terms of money. The economic costs of oil depletion are unforeseeable and the costs of irreversible and irreparable environmental degradation are immeasurable.

Figure 3 and table 13 shows the aggregated results of the economic cost computed for the two scenarios A and B. Because external costs are not taken into account, the real differences in costs to be assigned to scenario A and B, respectively, are much higher than shown in figure 3 and table 13. Were the external costs of CO_2 emission and other environmental hazards as well as the external costs of resource depletion estimated in some way and taken into account, the resulting total costs to be borne by the society as a whole would become higher by an order of magnitude in scenario A than in scenario B. Therefore, scenario A is unrealistic.

Finally, it should be noted that the economic costs computed in this manner do not provide a basis for the assessment of end-use consumer prices of electricity and heat. The setting of consumer prices is a matter of cost distribution policies or business preferences regarding the setting of prices for electricity and heat from cogeneration stations.

4. Limits to growth

Continued quantitative growth in the stocks of energy consuming hardware is a risk factor which must be taken into account in the search for an appropriate strategy for the construction of a viable energy system. Continued growth makes the welfare society more and more vulnerable to future restraints in energy supply.

In a finite world with limited energy resources, exponential growth in the quantities of energy consuming hardware can continue only for a limited period of time. And even without energy or other resource constraints, saturation will occur at some point. Surely, billions of people on this planet have good reasons to strive for energy consuming aids which can make life easier, but in the Nordic countries, with stagnating populations, a redoubling of the number of cars or the time spent in cars does not make sense. Neither does a redoubling of the number of electric household appliances or the number of square metres of heated floor area in buildings.

Nevertheless, in the scenarios considered in this paper, it is assumed that the points of saturation have not yet been reached. As shown in section 19, figure 1, the main quantitative factors influencing energy consumption are assumed to continue to grow in the next decades, except transportation volumes, which are assumed to peak around 2020 at a level about 15% higher than in 2005.

To indicate the sensitivity of the B-scenario results to upwards changes in these growth factors, the fossil fuel consumption and CO_2 emission results computed for a scenario identical to the B-scenario but with stronger growth in the main quantitative growth factors are shown in table 18.

5. Future fuel prices

Future fossil fuel prices are unpredictable but considering the looming peak of global oil production capacity they are likely to grow to unprecedented heights. In this study the economic costs are computed in the three fuel price development cases shown in section 19, figure 2 and table 12.

The reason for taking three different fuel price cases into account is only to assess the influence of these prices on the total costs involved in the different scenarios. There are no forecasts involved.

6. The fictive baseline scenario A

The business-as-usual scenario A is a baseline scenario in which no technological or structural changes take place, apart from the replacement of old electrical appliances by new, more energy-efficient models. It is a fictional scenario because changes *will* take place and because fossil fuel consumption and CO_2 emission will be restricted in the next decades.

Comparing scenario A with a viable scenario such as scenario B, only one observation can be made. Namely, that even on another planet where fossil fuels were practically unlimited but becoming more costly and the climate was not influenced by CO_2 emission, the B-scenario would be preferable to the A-scenario in purely economic terms.

7. A viable investment programme. Scenario B

Energy policy and planning is all about the allocation of labour and other resources to particular projects. A political strategy for change is manifested in the form of an investment programme. An investment programme for the initiation of the transition to a viable energy system, namely the investments to be made in scenario B, is presented in section 19, table 1. The main results of the implementation of this investment programme are shown in figure 3, 4 and 5. More detailed country-by-country results are shown in the tables 2 thru 17.

8. Nuclear power

In the A-scenario nuclear power production continues at the 2005 level. In the Bscenario, the nuclear reactors in Sweden as well as in Finland are phased out around 2025.

The total costs of operation and maintenance of nuclear plants over the scenario period are estimated at 28,000 mio. Euro in scenario B (see section 19, table 1) as against 43,000 mio. Euro in scenario A. The costs of operation correspond to about 15 Euro/MWh on the average for all the plants. The total costs of maintenance/refurbishing are estimated at 6,200 mio. Euro in scenario B and 7,600 mio. Euro in scenario A. The costs of decommissioning nuclear plants are not included in the cost computations.

In 2005 the construction of a new reactor, Olkiluoto 3, began in Finland. It is expected to be commissioned in 2010. In the B-scenario, the production from this reactor is not needed in the Nordic energy system. It is, therefore, not taken into account, neither as a power source nor as an economic cost item. However, if the

reactor is completed, it allows for the sooner decommissioning of the other reactors in Finland.

Greenpeace envisages that the decommissioning of nuclear reactors in Sweden and Finland could take place as follows:

	Reactor	Capacity MW	Age in 2005 Years	Decommissioned in at the age of
Sweden:	Oscarshamn 1	445	34	2009 38 years
	Ringhals 1	835	31	2011 37
	Oscarshamn 2	605	31	2012 38
	Ringhals 2	875	31	2013 39
	Forsmark 1	970	25	2015 35
	Ringhals 3	915	25	2016 36
	Forsmark 2	970	24	2018 37
	Ringhals 4	915	23	2020 38
	Oskarshamn 3	1160	20	2022 37
	Forsmark 3	1160	20	2024 39

Finland:

Assuming that the Olkiluoto 3 reactor is not completed:

Reactor	Capacity MW	Age in 2005 Years	Decommissioned in at the age of		
Loviisa 1	488	28	2016	39 years	
Loviisa 2	488	25	2019	39	
Olkiluoto 1	840	27	2022	44	
Olkiluoto 2	840	25	2025-29	45-49	

Assuming that the Olkiluoto 3 reactor is completed by 2010:

Loviisa 1	488	28	2010	33 years
Olkiluoto 1	840	27	2010	32
Loviisa 2	488	25	2012	32
Olkiluoto 2	840	25	2019	39
Olkiluoto 3	1600		2025-29	9 15-19

9. Hydropower

No investments in new hydropower capacity take place in either of the two scenarios. In the A-scenario the electricity production in hydropower stations in Norway, Sweden and Finland is the same year by year, equalling the average production in years with "normal" precipitation.

In the B-scenario, the production in 2005 equals the average production in "normal" years. In the following years the production is gradually (linearly) reduced to 85% of the "normal" production by 2030. The reason for this reduction is that computed capacities in cogeneration stations should be sufficient to provide backup power generation capacity in years with lower precipitation than in "normal" years.

Moreover, the CO_2 emission reduction computed under this restraint (see section 19, figure 3 and table 19) should be on the safe side of the margin of uncertainty regarding a moving annual average. Likewise, the computed economic cost benefits of the B-scenario as compared with the A-scenario (see figure 3 and table 13) tend to be underestimated because the economic benefits of the existing hydropower capacity are bigger in the A-scenario than in the B-scenario.

10. Large investments in the end-use sector

The results obtained in the B-scenario strongly depend on the more efficient utilisation of energy resources in the end-use system. Therefore, as shown in section 19, table 1, a large percentage of the investments are to be made in buildings: In Norway almost 80%, in Sweden 60%, in Finland and in Denmark 45%. The higher percentages in Norway and Sweden are mainly due to the replacement of electric radiators by central heating from heat pumps, biomass boilers, and mini-cogeneration units in many buildings, see table 5.

11. Lower utilization of investments in cogeneration stations

The energy conversion and transmission system consist of power and cogeneration stations and boiler stations; facilities for the conversion of electric power to chemical energy for the powering of vehicles; and district heating and gas networks and electric power transmission lines. The system serves to convert and transmit electric power and chemical energy (fuels) from the energy sources to the end-use system at such rates that the end-use demands for electric power, district heating and motive power for transport are continually met. Therefore, the investments needed in the conversion and transmission system in order to make sufficient capacities available and to ensure the energy-efficient functioning of the system are determined mainly by:

- 1) the development in end-use electricity demand and in heat demand at certain temperatures in the end-use system;
- 2) the growth in electric power generation in windmills, photovoltaic panels, and, possibly, wave machines;

and by

3) the partial shift from fossil fuels to biomass fuels in collective cogeneration stations.

In particular, the investments needed in cogeneration stations are determined by these factors.

As shown in section 19, table 4, fuel-based power generation in 2030 takes place in collective cogeneration stations and individual cogeneration units only. Most of the electricity generation in the collective cogeneration stations takes place in the winter month (see table 14 and 15: Electricity production in "motors"). Moreover, the power delivered from the stations to the grid must be regulated upwards or downwards in opposition to the power generation in windmills, partly by means of heat pumps connected to the stations' district heating networks. Therefore, the utilization of the investments made in power generation capacity in these stations becomes relatively low (less than 3000 hours/year), corresponding to the utilization of investments in windmills.

In Denmark in particular, the power delivered to the grid from collective cogeneration stations is much smaller in 2030 than in 2005 (see table 4) although the heat production from these stations is about the same as in 2005 (see table 3). This is partly because of fuel-shifts from coal and gas to biomass fuels (see table 6), resulting in a lower power-to-heat ratio, partly because part of the power generated is used in heat pumps (see table 15). In the other countries heat pumps in cogeneration stations play a minor role.

Because of the relatively low utilization, the pay-back time for investments in cogeneration stations, including heat pumps for the regulation of the power to heat output ratio, is much longer than normally accepted for investments in the private sector.

Naturally, the relatively low utilization of investments is a general characteristic of energy systems in which windmills and solar energy sources, whose production fluctuate and vary in the diurnal and annual cycles, play a major role.

12. No separate electricity sector

Because of the dependency of investments in the collective energy conversion stations on the investments made in buildings and new energy sources, the concurrent coordination of the investments made in all sectors of the system is essential. However, under the present electricity market regime this coordination cannot be ensured.

By legislative measures regarding subsidies, taxation, technical standards, and price guaranties, the governments can ensure that private investments in buildings, such as those listed in section 19, table 1, are made. By tendering, the governments can also ensure that investments in windmills on appropriate locations are made. But the government cannot ensure that the investment policies of the big corporate electricity companies operating in the electricity market are in accordance with a strategy laid out in an appropriate investment programme.

For example, for people to shift from electric heating to district heating there must be a district heating network and a cogeneration station at the end of the pipe. But it may not be a lucrative business for private electricity companies to make investment with a long pay-back time in cogeneration stations and thereby eliminate part of their electricity market, unless they can set a high price for the heat from these stations.

The crux of the matter is that in an energy-efficient integrated energy system with an around-the-clock varying interplay between many different energy sources there is no electricity sector which can be singled out from the rest of the system.

Investments in windmills and photovoltaic panels cannot be efficiently utilised unless the system as a whole is designed to make efficient use of their continually varying power generation. And power generation in collective cogeneration stations and individual mini-cogeneration units is tied up with the heat generation required from these stations and units at the different times of the year, partly regulated by the use of electric power in heat pumps. Moreover, a part of the electric power generated in the system must be converted to chemical energy in the form of hydrogen or other chemical potentials for use in vehicles.

Thus, electric power generation in the many different power generating stations and units is an integral part of the functioning of the system as a whole. The electricity market regime, in which an artificial electric power sector is singled out from the system as a whole, is detrimental to the construction of an efficiently operating integrated energy system.

In particular, it should be noted that in cogeneration stations in which electric power transmission to heat pumps or electrochemical converters (electrolyses or other, see section 14) is an integral property of the functioning of the stations, the rate of power transmission at different times should be regulated in such a manner that the overall energy efficiency of the energy system is optimized under the varying conditions regarding electricity consumption, heat consumption, and power generation in windmills and solar devices. In the SESAM model, which represents the physical properties of the energy system, only a power transmission regulation routine which approximates the thermodynamically efficient functioning of the system can be simulated. Any other regulation criteria would be arbitrary. It is highly questionable whether the thermodynamic efficiency criteria can be met under an electricity market pricing regime where the operators of cogeneration plants with heat pumps and electrochemical converters seek to minimize their net production costs.

It should also be noted that in industrial plants there is no rational reason to assign prices to the internal electric power transmission to the plants' production machinery from engines or fuel cells which are integral parts of the plants. Within industrial plants, biogas plants, and other production complexes, electric power transmission is simply an easier and cheaper way than mechanical or hydraulic transmission to transmit power upon which the functioning of the plants depends. And - presumably noone would assign specific prices to mechanical or hydraulic power transmission.

13. Motive power for transportation

The factors which in the B-scenario determine the changes in fuel consumption and electric power consumption in vehicles are shown in section 19, figure 1 and table 7, 8 and 9. In this scenario these factors are the same for all the four countries:

- First, in figure 1, the changes in transportation volumes.
- Second, in table 7, the distribution of transportation volumes by individual and collective means of transport. (The distribution of collective transport by the different collective means of transport is not shown in this presentation).
- Third, in table 8, the average changes in motive power per person- or tonkilometre as a result of changes in
 - a) the number of people transported in each vehicle (percentage of seats occupied; car-sharing),
 - b) the weight and aerodynamics of vehicles, and
 - c) the average speed of vehicles.
- Fourth, in table 9, the means and energy-efficiency of motive power generation.

The steep decline in oil consumption in vehicles shown in figure 6 is the result of changes in all these factors so as to improve energy efficiency. In particular the improved efficiency of engines. In 2030 all petrol- and diesel-fuelled vehicles are assumed to be combustion-engine/electric hybrids with recuperation of breaking power.

"Fuel cell" here stands for any kind of electrochemical power device: hydrogen or methanol fuel cells or metal-oxygen cells such as the zinc fuel cell. (See notes to figure 6 and table 11).

14. From electric power to mechanical shaft power in vehicles

As oil consumption is reduced - deliberately or because of global oil production capacity limitations - the mechanical shaft power in vehicles must increasingly be delivered form the electric grid, directly from overhead wires or power rails to trains, trams and trolley busses or indirectly as chemical or electrochemical energy generated by electric power.

The *direct transmission* of electric power to electric motors in vehicles is by far the most energy-efficient way. In this way about 20% of the electric power delivered from power generating units is lost in the grid and in the electric motors.

The *indirect transmission by means of batteries* is less energy-efficient. Because of additional losses in the charging and discharging of batteries the total loss becomes about 40%, probably less when new batteries with lower losses penetrate the market.

The *indirect transmission by chemical potentials* in the form of hydrogen, methanol or a metal (e.g. zinc) is subject to considerably bigger losses. First the losses in the processes in which the chemical is produced. Then - for hydrogen in particular - the losses in storage and recovery. And, finally, the losses occurring in the engines or fuel cells in which the chemical potential is converted to mechanical or electric power. In the case of fuel cells, additional losses occur in the intermediate storage in buffer batteries of some of the electric power from the cell to the electric motor.

If hydrogen is produced in electrolytic converters, stored in high pressure storage tanks or in metalhydrids and reconverted to electric power in PEM fuel cells³, the total loss on the way from power generating units to the wheels amount to about 80%. Similar energy losses plus large CO_2 emissions take place when hydrogen is produced in coal/water gasification processes or from natural gas.

Hydrogen can be stored and transported in the form of chemical compounds such as magnesium hydrid or ammoniac. In that case additional losses occur in the chemical storage and retrieval processes.

A different kind of fuel cell, rather like a galvanic battery, has been developed in China. In these cells the electric current is generated by the oxidation of zinc plates. The electric power is converted to an electrochemical potential by the reduction of zinc-oxide from the used oxidated zinc-plates. Thus the zinc is recycled in the process: reduction of zinc-oxide by electric power > oxidation of zinc in the power generating cell. As zinc is cheaply available in large quantities and much easier to handle than hydrogen, this technology may prove preferable to hydrogen technologies.

In this study, "Electricity for transport", as recorded in figure 4 and table 11 a - e, stands for electricity consumption in vehicles driven directly by electric power (trains, trams, trolley busses powered from overhead wires or power rails) *and* consumption in the recharging of batteries used in electric cars.

Electricity consumption in processes in which electric power is converted to a chemical potential (in the form of hydrogen, a chemical compound or an electropositive metal) is called energy consumption for "electrolysis". Thus "electrolysis" covers any such process. The reason for this is that these converters are larger plants which are assumed to be located at cogeneration stations so that the heat released in the processes can be utilised in district heating networks, see table 3, table 11 a - e and table 14.

³ PEM: Proton Exchange Membrane. It should be noted that hydrogen can also be used in specially designed piston engines, attaining an energy efficiency comparable to the PEM fuel cell + intermediate power storage battery + the electric motor. The fuel cell is not necessarily the most efficient power device but surely the most expensive.

15. Electric power transmission between the Nordic countries

As shown in section 19, table 16, electricity export from Norway in the summer months grows to about 9 GW on the average by 2030. About 2 GW goes to Sweden, about 4 GW to Finland, and about 2 GW to Denmark. The reason is that the electricity production in cogeneration stations is much smaller in summer than in winter and that also windmills produce less in summer than in winter. Therefore, to meet the electricity demand in summer and to deliver electric power to processes converting electric power to chemical energy for vehicles (electrolysis or other) at the same time, the production in hydropower stations must be higher than in winter, see table 14. As most of the hydropower capacity is in Norway, these circumstances result in an increase in the electricity export from Norway in the summer month.

In 2030 about 20% of the electric power produced in the Nordic countries in the summer months, corresponding to about 50% of the electricity export from Norway, is converted to chemical energy for use in vehicles. With sufficient storage capacity, this conversion can be regulated according to the diurnal fluctuations in electric power from windmills and photovoltaic panels. Moreover, the charging of batteries for electric cars can likewise be regulated. By these means the fluctuations in power transmission from Norway to the other countries can be levelled out so that the need for transmission capacity will not by far exceed the average of about 9 GW.

In section 11 above it is mentioned that investments with a rather low utilization, in terms of hours of usage per year, is a general characteristics of energy systems designed to make efficient use of many different energy sources with different annual and diurnal production variations and in which cogeneration of power and heat ensure the efficient utilization of fuel resources. The investments in power transmission lines from Norway, needed to make efficient use of the Norwegian hydropower resources, is an example of these low-utilisation investments.

16. CO₂ emission reduction

The annual CO_2 emissions shown in section 19, figure 3, table 11 and table 16 comprise emissions from stationary units (chimneys) and vehicles (exhaust pipes), except emissions from oil refineries, oil platforms in the North Sea and international air carriers.

In scenario B the 2008 - 2012 emission reduction requirements agreed upon in the EU according to the Kyoto protocol are met for the Nordic region as a whole (see table 11a and 19). For Norway, Sweden and Finland the emissions are a little smaller than or equal to the allowed emissions - in total 2.7 mio. tonnes or 2% less than allowed. Correspondingly, the total emission for Denmark is 2.0 mio. tonnes or 2.0% above the allowed.

In order to limit the rise in average global temperatures to 2 degrees above the preindustrial temperatures, the developed countries should before 2020 reduce their emissions to 70% of their 1990-emission levels. In scenario B this goal is met for the Nordic region as a whole as the emissions from Sweden, Finland and Denmark are substantially reduced, partly because of electricity import from Norway (see table 16). The further reductions achieved by 2030 come close to the 80% reductions set as a goal for the old developed countries by 2050, so as to allow for an increase in the emission from developing countries under the global plus 2 degrees temperature ceiling.

17. No general specific CO₂ emission reduction factors

In the argumentation for or against certain investments, a specific CO_2 emission reduction factor is often quoted as a weighty argument. For example, it is said that one additional PetaJoule of windpower will reduce the CO_2 emission by so many tonnes per year. But in fact there are no such specific reduction factors which are generally applicable. As shown in the examples in section 19, table 17, the factors vary considerably as the energy system undergoes structural changes.

In the scenario B case, the emission factors for total electricity consumption and for electricity generation in windmills and hydropower stations are generally reduced as the system is changed, see table 17. Because the system is a non-linear complex in which changes in any component has an influence on every energy flow in the system, the numerical changes in these factors are not easily explained.

However, regarding electricity consumption, the main reason why the emission factor is reduced in the course of time is that a higher percentage of the electricity generated in cogeneration plants is converted to heat and to chemical energy for use in vehicles. This conversion is accompanied with energy losses in heat pumps and in electrochemical converters. When electricity consumption in the end-use system is increased, less electricity is converted to heat or chemical energy and, therefore, the conversion losses are decreased. Thus, the reductions in fuel consumption and CO_2 emission obtained by a marginal increase in electricity consumption become smaller, even though the amount of chemical energy for vehicles is reduced. But still, it does pay to save electricity in buildings and industries so as to make more electric power available for transportation.

For the same reason, the reductions obtained by a marginal increase in power generation in windmills becomes smaller as conversion of electric power in heat pumps in cogeneration stations and electrochemical converters comes into play, see table 17.

For hydropower the marginal effects on fuel consumption and CO_2 emission of a marginal increase do not change as much as for windpower. The reason for this is that the hydropower production in contrast to windpower is regulated so as to utilize the production efficiently in the annual and diurnal cycles.

In 2010 the marginal effect of an increase in electricity consumption is numerically less than the marginal effect of an increase in power generation in windmills or hydropower stations. One reason for this is that indoor electricity consumption contributes to the heating of buildings. Therefore, when electricity consumption is increased, fuel consumption for heat generation is decreased.

The examples shown in table 17 thus serve to draw attention to the fact that the energy systems analysis is concerned with complex systems the properties of which cannot be quantified by simple linear spread-sheet analyses. Regarding the preparation of consistent information for energy policy decisions, this is an essential observation.

18. In search of a least-cost strategy for the common good

As noted in section 10 above, individual investments in buildings - improved weathering and new heating installations - are essential for the achievement of the B-scenario results. These investments make up a substantial part of the total investment cost. In total they amount to about 130,000 mio. Euro or about 5,000 Euro per capita in the Nordic countries as a whole - about 10,000 Euro per capita in Norway, 5,000 in Sweden, and about 4,000 in Finland and Denmark over the 25 year period from 2005 to 2030. Plus increasing costs of re-investments in and maintenance of heating installations, see section 19, table 1.

Investments in new energy conversion and storage facilities and new energy sources total about 120,000 mio. Euro and the corresponding costs of re-investments and maintenance total about 110,000 mio. Euro. As mentioned in section 11 and 14 above, the annual utilization of many of these investments is relatively low.

The total costs of investments, re-investments and maintenance over the 25 year period is about 470,000 mio. Euro - around 18,000 Euro per capita in Norway, Sweden and Denmark, a little more in Finland. On the average only around 750 Euro per capita per year.

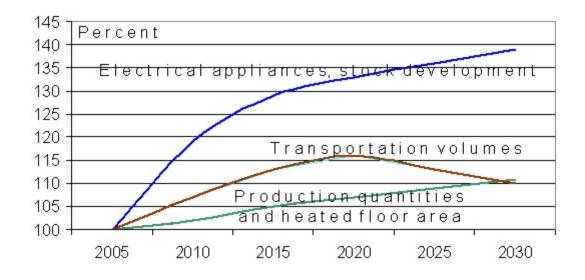
Some of the capital invested in the different kinds of machinery is worn out along the way (is depreciated) but as shown in figure 3, a large portion (the accumulated capital) remains intact in 2030, serving to keep down the annual fuel costs. And as shown in figure 3 and table 13, the economic cost assessments do not indicate any significant benefits of the pursuance of a business-as-usual policy, even if businessas-usual were a possible option.

Notably, investments in new transportation infrastructures are not included in the cost accounts. This is because there is no basis for the assessment of the investment costs before the new infrastructures are more concretely specified, neither for the comparison with the investment costs implied in the pursuance of the business-as-usual approach.

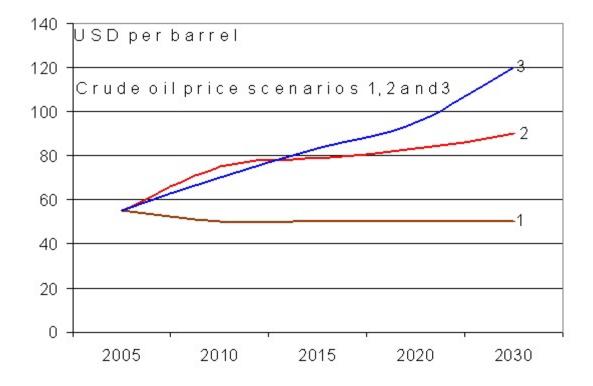
However, assuming for the case of argument that scenario A is a realistic scenario, it could be argued that the savings in annual costs of operation obtained in the B-scenario can pay for large investments in new transportation infrastructures. As shown in figure 3, the annual costs of operation, including maintenance, depreciation and fuel costs (fuel price case 2), in 2020 - 2030 amounts to about 45,000 mio. Euro/year in scenario A and about 32,000 mio. Euro in scenario B - investments in new transportation infrastructures not included. A portion of the annual savings of about 13,000 mio. Euro, for instance 5,000 mio. Euro/year, can pay for long-term investments in the range of 50,000 - 100,000 mio. Euro in new transportation infrastructures.

Or, more to the point, for transport in particular it does not make sense to compare the business-as-usual with a programme for change. Because there is no way that transportation can remain based mainly on oil-driven means of transport of the present kinds. The longer these technologies prevail and expand, the steeper the decline when the global oil production capacity can no longer meet the global oil demand. Therefore, the swifter the present generation of fuel-guzzling cars is replaced by much more energy-efficient models and substantial parts of the transportation of persons and goods are transferred to energy-efficient collective means of transportation, the better the future social economy for the common good. In conclusion, regarding the social economy for the common good there is no rational reason not to pursue an energy policy aimed at the implementation of comprehensive, well-coordinated investments programmes aimed at the expeditious reduction of fossil fuel consumption and CO_2 emission. Indeed, there is no realistic alternative to the safeguarding of the basic physical functions of the welfare society by the pursuance of such a policy.

Therefore, the conventional economic comparison of a viable scenario with a business-as-usual scenario, as in figure 3 and table 13, is of very limited relevance. What is relevant is the search for a least-cost strategy for the development of a viable energy system comprising transport and all. The B-scenario is a first approximation to such a least-cost strategy.

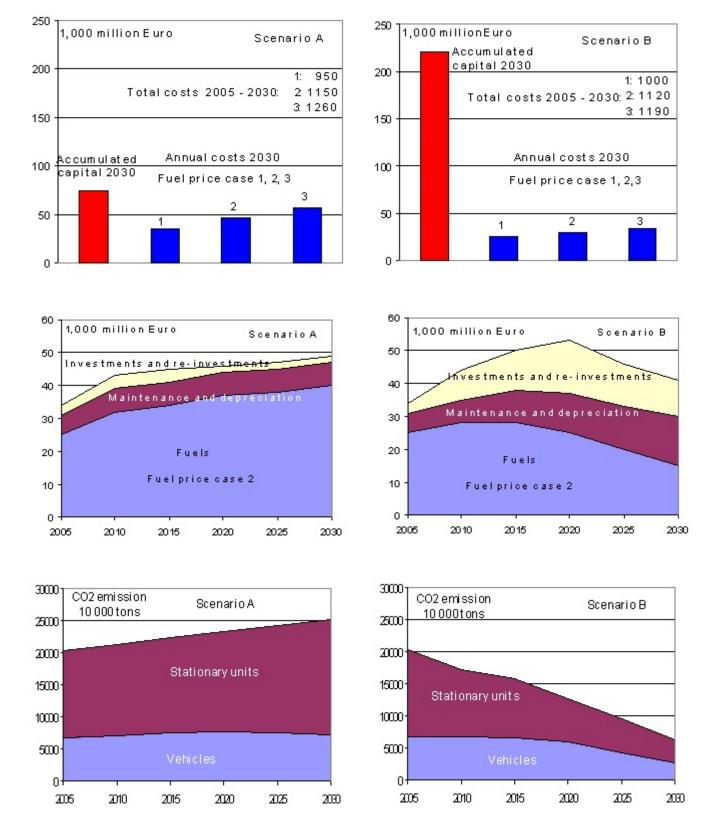

19. A first approximation to a viable energy strategy for the Nordic countries

This section shows in graphs and tables a path towards a viable Nordic energy system. In the macro-perspective of total economic costs, CO_2 emission and fuel consumption, this path, called scenario B, is compared with the fictive "baseline" scenario A. This comparison strongly indicate the benefits regarding economic costs, resource economy and environmental impacts of the implementation of an investment programme such as the B-scenario programme.


The transition towards a viable energy system along the scenario B path takes place in a multi-dimensional space of interrelated changes in the many parts and sectors of the energy system. Each graph and table show the transition in one or more of the many dimensions. This documentation provides the insight primarily needed for the inspection and subsequent improvement of the contents of the database which constitutes the model.

Graphs and tables:

- Figure 1. Quantitative growth rates
- Figure 2. Crude oil price scenarios
- Table 1.
 Investments, reinvestments and maintenance costs
 2005 2030
- Figure 3. Economic costs and CO₂ emission for the Nordic energy system as a whole
- Figure 4. Consumption and generation of electricity and heat
- Figure 5. Total fuel consumption, including oil consumption in vehicles
- Figure 6. Fuel consumption in vehicles
- Table 2.Room heat and hot water. Net by source
- Table 3. District heat production
- Table 4. Electric power generation
- Table 5. Replacement of electric heating
- Table 6. Fuel consumption in stationary units
- Table 7. Transportation by means of transport
- Table 8. Average motive power in 2030 per person/tons-kilometre
- Table 9.Means of motive power generation
- Table 10. General quantitative, qualitative and structural development parameters
- Table 11a. Summary of physical results. All four countries
- Table 11b e Summary of physical results, country by country
- Table 12. Fuel prices
- Table 13. Summaries of economic costs. All four countries. Scenario A and B
- Table 14.Annual and monthly energy balances in 2030. The four countries as a
whole
- Table 15. Annual and monthly energy balances in 2030. Denmark
- Table 16. Electricity import and export in 2030
- Table 17.
 Marginal changes in CO2 emission as a result of marginal changes in electricity consumption or production
- Table 18. Comparison with a stronger-growth scenario
- Table 19. CO_2 emission reductions


Figure 1. Quantitative growth rates. The same quantitative growth rates are assumed for all the four Nordic countries. For stocks of electrical appliances the growth shown is the weighted average (with respect to annual electricity consumption) for all the different types of appliances. For heated floor area it is the average for all the different building categories. Production quantities are assumed to be the same for all industrial branches. Transportation volumes are measured in person-kilometres and ton-kilometres, respectively.

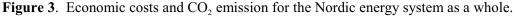
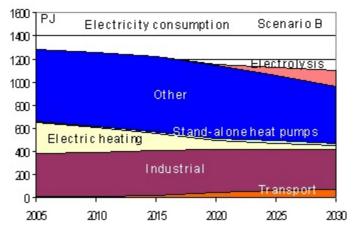
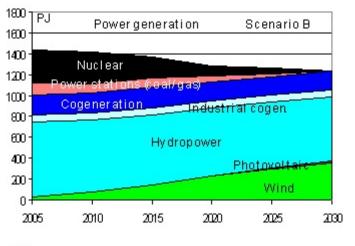
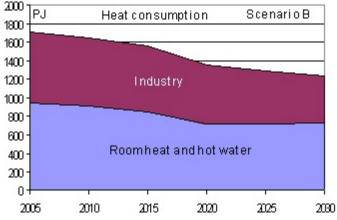


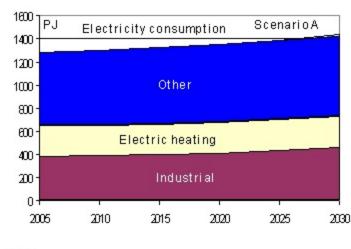
Figure 2. Crude oil price scenarios. The costs of fuel supply are computed in the three cases of future crude oil prices shown. The prices shown are in 2005-USD. The Euro/USD exchange rate is assumed to be constant 1.25 in the whole period. The consumer prices of coal, fuel oil, gas oil, petrol, diesel and natural gas (excl. taxes and VAT) vary with the crude oil price. See table 12.

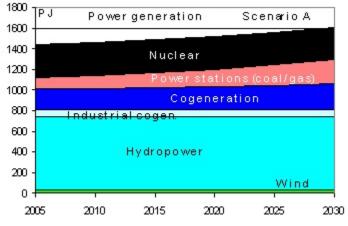
Naturally, these fuel prices are rather arbitrary projections. They are relevant only for the examination of the sensitivity of the economic costs with respect to fuel prices.

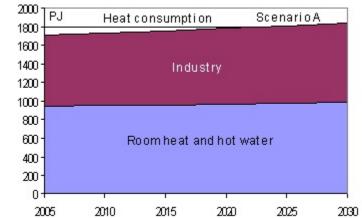

Table 1Investments, re-invest	ments and	d mainte	nance co	sts 2005	5 - 2030
1,00	0 million	Euro			
	NOR	SWE	FIN	DEN	Total
In buildings:					
Improved heat insulation, heat recovery, etc.	11	24	13	15	63
Average reduction of heat consumption per					
sq.metre of heated floor area	34%	30%	29%	30%	31%
Piping, radiators	16	14	5	3	39
Heat pumps	6.6	1.1	0.6	0.5	9
Mini-cogeneration units	1.3	2.5	1.6	2.1	8
Boilers	5.1	2.8	1.0	0.7	10
Solar absorbers	1.1	0.4	0.3	0.7	2
Investments total	41	46	22	22	131
Re-investments and maintenance total	15	31	18	20	84
Total costs	56	77	40	42	215
Collective supply stations (power and heat)					
and district heating networks.					
Excl. nuclear power stations					
Investments total	4.4	17	15	15	52
Re-investments and maintenance total	2.7	24	25	21	73
Total cost	6	41	40	36	125
Conversion of electric power to chemical					
energy for the powering of vehicles (hydrogen					
or other)					
Investments total					7
Re-investments and maintenance total					3
Total costs					10
Nuclear power stations					
Total operating costs		19	9		28
Windmills Power generation in 2030	60 PJ	115 PJ	87 PJ	98 PJ	360 PJ
Installed power MW	5100	9360	7560	9000	31000
Investments total	6.1	12	9.1	7.6	35
Re-investments and maintenance total	3.5	7.6	4.5	7.8	23
Total costs	10	19	14	16	58
Photovoltaic panels					
Power generation in 2030					18 PJ
Investments total					18
Re-investments and maintenance total					4.5
Total costs					22
Solar panels for district heating					
Heat generation in 2030	2.4 PJ	3.9 PJ	5.5 PJ	12 PJ	24 PJ
Investments total	0.4	0.6	0.8	1.7	3.5
Re-investments and maintenance total	0.1	0.1	0.1	0.3	0.6
Total costs	0.4	0.6	1.0	2.1	4
Biogas plants Gas production in 2030		18 PJ	25 PJ	20 PJ	63 PJ
Investments total		1.5	2.0	1.3	5
Re-investments and maintenance total		0.9	1.8	1.3	4
Total costs		2.4	3.9	2.6	9
Total costs (Industrial plants not included)	72	159	108	99	471

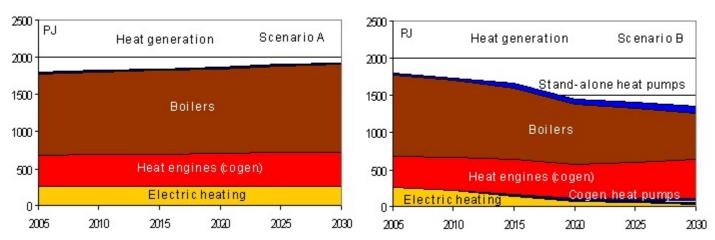


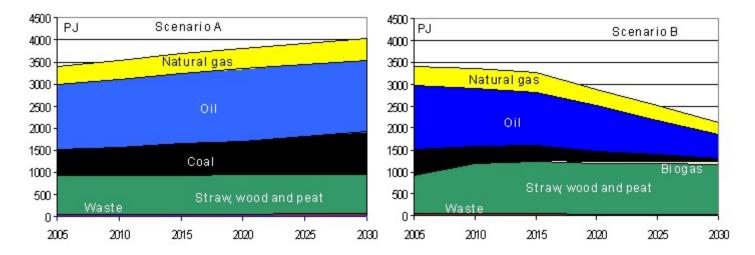



As a result of the investments made in scenario B (see table 1), the annual CO_2 emission is substantially reduced. Moreover, the total future annual costs in terms of fuel supply, maintenance, and depreciation of capital are substantially reduced in scenario B as compared with scenario A. Regardless of future fossil fuel prices, the total costs, including investments and re-investments, over the period 2005 to 2030 are the same in scenario A and B, within the margin of uncertainty of the cost assessments.


The costs of investments in new transportation infrastructures are not included in the cost accounts for scenario B. However, the future savings in annual costs allow for large investments in new transportation infrastructures without an increase in total annual expenditures of the development and operation of the energy system as a whole as compared with a scenario where oil and gas consumption in vehicles is not substantially reduced.







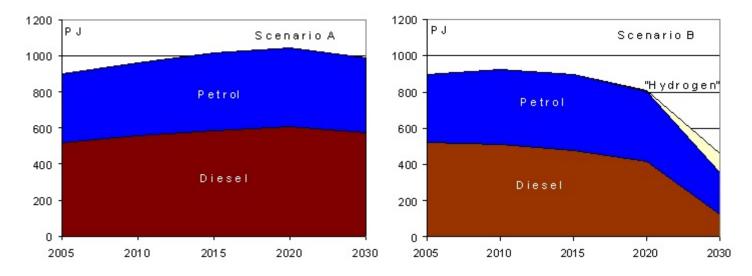


Figure 4. Consumption and generation of electricity and heat. In scenario B nuclear power and power from coal-fired power stations is phased out and electric heating is mostly replaced by other means of heat supply (see table 5). Many fossil-fuel-fired stations are replaced by biomass-fired stations with a lower power to heat ratio (see table 6). Therefore, heat from cogeneration stations grows although electricity generation from these stations is almost constant.

Figure 5. Total fuel consumption, including oil consumption in vehicles. Although nuclear power is phased out and hydropower in 2030 is taken into account by only 85% of the normal-year-production (see figure 4, table 4 and table 11), a substantial decline in fossil fuel consumption is achieved in scenario B.

Figure 6. Fuel consumption in vehicles (cars, vans, buses, lorries and trucks, trains and ships). As specified in table 7, 8 and 9, substantial improvements in the energy efficiency in the transport sector is assumed to be achieved in scenario B. Moreover, transportation volumes are assumed to peak around 2020, see figure 1. These changes require that the implementation of a well-planned transition to new, more energy efficient transportation infrastructures as well as the marketing of more energy efficient cars begins well before 2010. Apart from CO₂ reduction requirements, the probability of the peaking of global oil production capacity before 2015 is a compelling reason for the accomplishing of comprehensive efficiency improvements in the transport sector.

"Hydrogen" here stands for any kind of chemical energy generated by the conversion of electric power to chemical energy for use in vehicles. (See section 14).

Table 2			Roo	om heat an	d hot wate	r. Net by s	source. PJ	/year			
		Norw	/ay	Swee	len	Finlar	Finland		Denmark		1
		2005	2030	2005	2030	2005	2030	2005	2030	2005	2030
Cogeneration stations	Cogeneration stations		30	95	160	96	115	109	106	300	411
Boiler stations		9	3	63	8	25	7	12	5	109	22
From industrial plan	ts							18	18	18	18
Loss in n	etworks	-1.5	-7.0	-33	-36	-27	-27	-30	-30	-92	-100
District hea	ting total	7	26	125	132	94	94	109	99	335	351
Individual boilers	Oil	17	7	67	14	42	12	34	9	160	42
	Nat.gas			4	1	5	1	31	6	40	8
	Straw,	25	32	33	51	49	44	12	14	119	141
	wood etc										
	Total	42	39	104	66	96	57	77	29	319	191
Individual mini-	Nat.gas				11		6		18		35
cogeneration	Biomass		10		10		7		2		29
units	Total		10		21		13		20		64
Individual solar par	rels				1		1		2		4
Electric heating			12	81	14	28	6	9	2	261	34
Individual heat pun	Individual heat pumps		52	16	23	5	9		3	24	87
	Total	195	142	326	257	223	179	195	156	939	734

Table 3District heat production PJ/year									
		Noi	rway	Swe	eden	Finl	and	Denmark	
		2005	2030	2005	2030	2005	2030	2005	2030
Cogeneration stations: Tot	tal:		30	96	160	96	115	109	106
Engine and exhaust cooling or	condensers		22	89	135	90	93	107	59
Heat pumps			2.4		3.0		4.2		23
Boilers			2.7	6.5	9.0	6.0	6.2	2.4	6.7
From electrolytic converters of	r alike				8.5		6.0		5.2
Solar absorbers			2.4		3.9		5.5		12
Boilers stations:	Total:	9	3.2	63	8	25	7	12	5
Boilers		7.2	3.2	61	6.5	25	7.1	12	5.3
Heat pumps					1.4				
Electric coils		1.4	0	2.0	0.3				
	Average dist	trict heating	temperatur	es. Degree	Celcius				
January	Forward	85	78	85	82	85	82	85	81
	Return	35	31	35	33	35	33	35	33
July	Forward	75	71	75	73	75	73	75	73
	Return	45	38	45	41	45	42	45	41

Table 4]	Electric	power g	eneratior	n PJ/yea	ar			
	Norway		Sw	Sweden		Finland		mark	Total	
	2002	2030	2005	2030	2005	2030	2005	2030	2005	2030
Nuclear power stations			240	0	78	0			318	0
Power stations (non-nuclear)					78	0	38	0	116	0
Cogeneration stations (collective) Excl. power used in heat pumps in the stations		10	47	66	59	47	92	33	199	156
Mini-cogeneration units (individual)		5		10		6		11		32
Industrial cogeneration stations			16	16	43	43	7.9	7.9	66	66
Windpower	0.1	61	3.6	115	0.3	87	26	98	30	360
Photovoltaic panels		4.4		4.4		4.4		4.4		18
Hydropower	423	360	244	207	47	40			713	607
Total	423	440	551	418	305	227	164	154	1443	1239

Table 5Replacement of electric heating.Percent of electric radiators									
		NOR	SWE	FIN	DEN				
By heat pumps		52%	16%	10%	10%				
By district heating		19%	26%	25%	25%				
By biomass boilers		7%	8%	12%	10%				
By mini-	Nat. gas		8%	8%	12%				
cogeneration units	Biomass	8%	8%	10%	6%				
Total r	replaced	86%	66%	65%	63%				

Table 6

Fuel consumption in stationary units PJ/year

					2005	5							2030	0			
		Coal	Fuel oil	Gas oil	Nat. gas	Straw Wood	Peat	Waste	Bio- gas	Coal	Fuel oil	Gas oil	Nat. gas	Straw Wood	Peat	Waste	Bio- gas
Norway	Total	70	18	24	13	64		7.6		29	8.3	9.7	42	137		2.6	
Power&cogenera	tion plants										2.1	0.8	2.6	53		0.9	
District heating b	oilers		0.5			1.5		7.6			0.6		0.3	1.8		1.7	
Individual boilers	and stoves			24		41						8.9		60			
Industrial plants		70	18		13	22				29	5.6		39	23			
Sweden	Total	79	143	84	54	348	19	14		19	47	18	52	489		6.8	18
Power&cogenera	tion plants	25	43		6.2	58	19	14			17	0.8	23	218		6.8	18
District heating b	oilers		27		1.5	45					0.5	17		7.5			
Individual boilers	and stoves			84	4.9	55							1.1	99			
Industrial plants		54	72		42	190				19	29		28	165			
Finland	Total	242	143	48	160	277	92	8.5		13	39	14	63	430		4.4	25
Power&cogenera	tion plants	217	32		59	38	25	6.2			10		26	128		3.7	25
District heating b	oilers	0.6	0.8		6.1	11	12	2.2		0.5	0.7		0.5	8.0		0.6	
Individual boilers	and stoves			48	5.2	96						14	1.0	86			
Industrial plants		24	109		90	131	54			13	29		36	209			
Denmark	Total	209	58	41	196	65		28	3.0	5.5	39	11	123	99		9.7	20
Power&cogenera	tion plants	198	6.1		105	28		8.3	3.0	0.5	9.1		75	46		3.6	20
District heating b	oilers		2.3		3.1	9.0		1.0			0.4		0.4	5.8		0.4	
Individual boilers	and stoves			41	35	21						11	6.7	27			
Industrial plants		11	50		52	6.0		18		5.0	29		40	20		5.6	
	Total	600	361	197	424	753	111	58	3.0	67	133	53	281	1156		24	64
Power&cogenera	x	440	81		170	124	44	29	3.0	0.5	38	2.3	127	445		15	64
District heating b	oilers	0.6	31		11	67	12	11		0.5	2.2		1.2	23		2.8	
Individual boilers	and stoves			197	45	213						50	9.0	272			
Industrial plants		160	250		197	349	54	18		66	92		143	417		5.6	

Table 7Transportation by means of transport. Percent of person/ton-kilometres											
Transport of:		Persons	Goods								
By: Cars		Collective means of transport	Lorries and trucks	Train and ship							
2005	77%	23%	70%	30%							
2030	57%	43%	49%	51%							

Table 8Average motive power in 2030 per person/ton-kilometrein percent of motive power used in 2005											
Cars	Busses	Trains, persons	Trains, goods	Lorries, trucks							
90%	80%	90%	90%	100%							

Table 9 Means of motive power generation										
			Petrol engine	Diesel engine	Electric motor	Fuel cell				
Cars	2005	Percent of motive power Efficiency	84% 0.21	16% 0.25						
	2030	Percent of motive power Efficiency	36% 0.30	10% 0.35	17% 0.67	37% 0.32				
Busses	2005	Percent of motive power Efficiency		100% 0.27						
	2030	Percent of motive power Efficiency		55% 0.35	45% 0.9					
Trains	2005	Percent of motive power Efficiency		14% 0.26	86% 0.9					
	2030	Percent of motive power Efficiency		12% 0.35	88% 0.9					

Table 10. General quantitative, qualitative and structural development parameters.

The parameters for electrical appliances, heated floor area, industrial production and transportation are the same for all the four countries.

For electrical appliances the values are weighted averages - with respect to annual electricity consumption - for the different types of appliances.

The parameters for net heat consumption in buildings are averages of computed values for the different types of buildings in the four countries.

Scenario B:

Electrical appliances Ir	ndex 2005 2005	=100 2010	2015	2020	2030			
Stock development El.consumption devel. Efficiency factor	100 100 1.00	119 103	129 105 0.81	133 101 0.76	139 78 0.57			
Buildings stock Index 2	2005=100 2005	2010	2015	2020	2030			
Heated floor area Net heat consumption Consumption per m2	100 100	102 97 0.94	105 91 0.87	107 76 0.71	2030 111 77 0.69			
Industrial production Index 2005=100								
Production quantities	2005 100	2010 102	2015 105	2020 107	2030 111			
Transportation, persons	Index 20		0.045					
Total Cars Public transport	2005 100 0.77 0.23	2010 107 0.77 0.23	2015 113 0.76 0.24	2020 116 0.75 0.25	2030 110 0.57 0.43			
Transportation of goods	Index 20		0015	0000	0000			
Total Vans and trucks Trains and ships	2005 100 0.70 0.30		2015 113 0.69 0.31	2020 116 0.67 0.33	2030 110 0.49 0.51			

Corresponding scenario A values ("business-as-usual" scenario):

Electrical appliances In Stock development El.consumption devel. Efficiency factor	ndex 2005 2005 100 100 1.00	2010 119 103	2015 129 105 0.81	2020 133 107 0.80	2030 139 110 0.79
Buildings stock Index 2 Heated floor area Net heat consumption Consumption per m2	2005=100 2005 100 100 1.00	2010 102 101 0.98	2015 105 102 0.97	2020 107 103 0.96	2030 111 105 0.95
Industrial production In Production quantities	ndex 2005 2005 100		2015 105	2020 107	2030 111
Transportation, persons Total Cars Public transport	Index 20 2005 100 0.77 0.23	2010 107	2015 113 0.77 0.23		2030 110 0.77 0.23
Transportation of goods Total Vans and trucks Trains and ships	Index 20 2005 100 0.70 0.30	2010 107	2015 113 0.70 0.30	2020 116 0.70 0.30	2030 110 0.70 0.30

Table 11a. Norway Sweden Finland Denmark Scenario B. Summary of physical results

Note: "Electrolysis, el.consum" stands for the conversion of electric power to any kind of chemical energy for use in vehicles, not necessarily hydrogen. Hence, "Hydrogen" stands for any kind of chemical energy generated by "electrolysis". See section 14.

Electricity consumption & Transportation Industrial processes Electric heating Stand-alone heat pumps Other Electrolysis,el.consum Export	export 2005	PJ 2010	MM: F4H3I 2015	1E2L1W3E 2020	2030 2030	
Transportation	13.3	16.9	25.4	42.0	76.4	
Electric heating	264	375 217	146	72.1	33.8	
Stand-alone heat pumps	6.79	8.40	16.0	19.0	24.8	
Otner Electrolysis,el.consum	0.00	0.00	0.00	629 7.15	489 142	
Export	0.00	-0.00	0.52	1.96	7.59	
Total	1282	1257	1222	1152	1112	
Electricity generation	PJ MM:	F4H3I1	E2L1W3P3S	3h1V3	2020	
Windpower	30.1	74.5	139	2020	360	
Photovoltaic panels	0.00	0.98	2.36	5.38	17.6	
Industrial cogenerat.	66.2	66.2	66.2	66.2	66.2	
Cogeneration stations	199	196	201	180	188	
Import	0.00	83.2 0.02	0.00	0.00	0.00	
Electricity generation Windpower Photovoltaic panels Hydropower Industrial cogenerat. Cogeneration stations Power stations Import Nuclear power	318	298	202	105	0.00	
TOLAL	1443	1414	13/3	1291	1239	
Net heat consumption P Room heat&hot water Industrial processes	J MM: F	4H3I1E2	L1W3P3S3h	1V3	0000	
Room heat&hot water	2005 941	2010	2015 853	2020	2030	
Industrial processes	763	737	710	644	511	
Total	1704	1645	1563	1356	1235	
Heat generation PJ MM Electric heating From indiv.solar coll. Collective solar coll. Electrolytic converter Cogeneration heatpumps Motors Boilers From seasonstor. to HP Stand-alone heat pumps	: F4H3I11	E2L1W3F	2015	2020	2020	
Electric heating	2005	2010	146	72.1	33.8	
From indiv.solar coll.	0.09	0.05	0.53	2.47	7.17	
Electrolytic converter	0.00	0.00	0.00	9.04 1.07	23.5	
Cogeneration heatpumps	0.00	0.00	20.8	32.1	32.5	
Motors Boilers	423 1085	450 1042	4/4 958	461 810	514 625	
From seasonstor. to HP	0.00	0.00	0.00	0.50	4.86	
Stand-alone heat pumps	23.4	29.5	57.0	67.9	88.8	
IUCAI	1195	1/30	1000	1400	1351	
Fuel consumption Total	PJ MM: 2005	F4H3I1 2010	E2L1W3P3S 2015	3h1V3 2020	2030	
Waste Straw+wood Biogas	58.1	52.1	46.8	39.4	23.6	
Straw+wood Biogas	864 303	1143 9 61	1192 25-4	1161 38 1	1156 63 6	
COal, Inc.	600	200	555	222	66.9	
Oil, int. Natural gas, int.	1458	1306	1212	1045	541 281	
Coal, ext.	0.00	0.03	-0.98	-3.68	-14.3	
Oil, ext. Natural gas, ext.	0.00	0.00	470 -0.98 0.00 -0.25	0.00	0.00	
			3280		2114	
Fuel consumption in vehic			F4H3I1E2L 2015			
PETROL	522	511	479	416	125	
DIESEL HYDROGEN	378	413	416	386 5.19	231 104	
			0.00			
CO2 emission, 10,000 tons	10.0 2005	00 tons 2010	з мм: F4H 2015	1311E2L1W 2020	2030 2030	
Transportation	6609	6786	6575	5891	2620	
Transportation Stationary units, int. Stationary units, ext.	13616 0.00	10435	9188 -10.7	6/46 -40.2	3669 -156	
Total Kyoto/EU target	20225	17221 17280	15752	17271	0133	

Table 11b. NorwayScenario B. Summary of physical results

Electricity consumption & Transportation Industrial processes Electric heating Stand-alone heat pumps Other Electrolysis,el.consum Export	export 2005 2.55 119 144 0.73 107 0.00 15.5	PJ P 2010 3.16 118 120 1.80 109 0.00 37.9	MM: F4H3I 2015 5.15 119 78.9 6.32 110 0.00 78.4	1E2L1W3P 2020 9.06 118 36.4 9.51 107 0.41 125	3S3h1V3 2030 17.2 101 12.1 13.9 86.0 10.7 175	
IOCAL	509	590	590	405	411	
Electricity generation Windpower Photovoltaic panels Hydropower Industrial cogenerat. Cogeneration stations Power stations Import Nuclear power Total	PJ MM 2005 0.13 0.00 423 0.00 0.00 0.00 0.00 0.00	: F4H3I1H 2010 8.46 0.24 412 0.00 2.06 0.00 0.00 0.00 0.00	E2L1W3P3S 2015 20.2 0.59 401 0.00 6.88 0.00 0.00 0.00 0.00	3h1V3 2020 31.8 1.35 387 0.00 11.3 0.00 0.00 0.00	2030 60.7 4.39 360 0.00 14.7 0.00 0.00 0.00	
Total	423	422	428	431	439	
Net heat consumption P Room heat&hot water Industrial processes	J MM: 1 2005 195 101	F4H3I1E21 2010 188 98.2	L1W3P3S3h 2015 176 95.5	1V3 2020 145 90.9	2030 142 80.8	
Total	296	287	272	236	223	
Heat generation PJ MM Electric heating From indiv.solar coll. Collective solar coll. Electrolytic converter Cogeneration heatpumps Motors Boilers From seasonstor. to HP Stand-alone heat pumps	: F4H31: 2005 144 0.03 0.00 0.00 0.00 150 0.00 2.83	1E2L1W3P2 2010 120 0.02 0.00 0.00 4.10 157 0.00 6.87	3S3h1V3 2015 78.9 0.21 0.00 0.73 13.9 156 0.00 24.1	2020 36.4 1.04 0.52 0.06 1.69 23.3 142 0.00 35.7	2030 12.1 3.38 2.38 1.61 2.44 31.7 125 0.40 51.8	
Total	298	288	274	241	231	
Fuel consumption Total Waste Straw+wood Biogas Coal Oil Natural gas	2005 7.58 63.6 0.00	4.77 111 0.00	E2L1W3P3S 2015 2.33 135 0.00 43.3 266 34.8	2020 3.81 134 0.00	2030 2.66 137 0.00 29.2 141 42.2	
			482			
Fuel consumption in vehic PETROL DIESEL HYDROGEN	2005 119 116 0.00	2010 117 128 0.00	2015 109 130 0.00	2020 95.9 121 0.30	2030 43.0 80.1 7.84	
			239			
CO2 emission, 10,000 tons Transportation Stationary units	2005 1732 1060	2010 1800 854	2015 1760 816	2020 1596 766	2030 906 656	
Total Kyoto/EU target			2577			

Table 11c. SwedenScenario B. Summary of physical results

Electricity consumption & Transportation Industrial processes Electric heating Stand-alone heat pumps Other Electrolysis,el.consum Export	export 2005 7.22 119 83.2 4.49 268 0.00 9.52	PJ P 2010 7.67 119 66.6 4.72 275 0.00 24.8	MM: F4H3I 2015 10.7 122 46.2 6.84 281 0.00 -0.00	1E2L1W3P 2020 16.4 122 23.3 6.63 270 2.64 -0.00	3S3h1V3 2030 27.8 110 13.8 7.19 209 56.7 -0.00	
Total	491	498	466	442	425	
Electricity generation Windpower Photovoltaic panels Hydropower Industrial cogenerat. Cogeneration stations Power stations Import Nuclear power Total	PJ MM 2005 3.56 0.00 244 15.5 47.4 0.00 0.00 240	: F4H3I1H 2010 24.7 0.24 238 15.5 57.7 0.00 0.00 220	E2L1W3P3S 2015 41.5 0.59 231 15.5 61.7 0.00 36.7 135	3h1V3 2020 72.4 1.35 223 15.5 58.0 0.00 62.9 60.0	2030 115 4.39 207 15.5 75.8 0.00 53.8 0.00	
Total	550	556	522	493	472	
Net heat consumption P Room heat&hot water Industrial processes	J MM: 2005 328 274	F4H3I1E21 2010 316 264	L1W3P3S3h 2015 296 254	1V3 2020 247 228	2030 256 178	
Total	601	580	550	475	433	
Heat generation PJ MM Electric heating From indiv.solar coll. Collective solar coll. Electrolytic converter Cogeneration heatpumps Motors Boilers From seasonstor. to HP Stand-alone heat pumps Total	: F4H3I 2005 83.2 0.02 0.00 0.00 121 414 0.00 15.7	1E2L1W3P2 2010 66.6 0.01 0.00 0.00 140 390 0.00 16.6	3S3h1V3 2015 46.2 0.10 0.00 9.03 154 351 0.00 23.7	2020 23.3 0.42 0.00 0.40 12.1 156 296 0.00 23.0	2030 13.8 1.15 3.90 8.50 2.96 190 226 0.70 24.9	
Total	634	613	585	511	472	
Fuel consumption Total Waste Straw+wood Biogas Coal Oil Natural gas	2005 14.4 367 0.00 79.0 510 54.5	2010 11.4 473 0.00 79.7 450 51.8	2015 8.57 480 6.72 69.2 413 56.5	2020 8.96 476 10.1 44.9 338 51.4	159 52.3	
Total	1025	1066	1034	930	745	
Fuel consumption in vehic PETROL DIESEL HYDROGEN	2005 196 87.8 0.00	PJ MM: H 2010 192 100 0.00	F4H3I1E2L 2015 180 101 0.00	1W3P3S3h 2020 156 91.5 1.92	1V3 2030 46.1 48.7 41.4	
		292	280	249	136	
CO2 emission, 10,000 tons Transportation Stationary units	2005 2082 3003	2010 2142 2480	2015 2055 2150	2020 1815 1599	2030 697 979	
			4206		1676	

Table 11d. FinlandScenario B. Summary of physical results

Electricity consumption & Transportation Industrial processes Electric heating Stand-alone heat pumps Other Electrolysis,el.consum Export	export 2005 2.01 108 27.7 1.57 160 0.00 -0.00	PJ P 2010 2.75 109 22.4 1.74 164 0.00 -0.00	M: F4H3I 2015 4.51 111 15.8 2.27 167 0.00 -0.00	1E2L1W3P 2020 7.74 111 9.26 2.19 161 2.02 -0.00	3S3h1V3 2030 15.1 100 5.89 2.81 125 39.8 -0.00	
Total	299	299	300	293	289	
Electricity generation Windpower Photovoltaic panels Hydropower Industrial cogenerat. Cogeneration stations Power stations Import Nuclear power Total	PJ MM: 2005 0.28 0.00 47.0 42.8 58.8 78.3 39.6 78.0	F4H3I1H 2010 6.09 0.24 45.9 42.8 58.0 67.5 45.7 78.0	22L1W3P3S 2015 21.8 0.59 44.8 42.8 56.8 69.7 40.3 67.0	3h1V3 2020 42.5 1.35 43.2 42.8 50.5 42.6 65.7 45.0	2030 87.0 4.39 40.1 42.8 52.7 0.00 98.8 0.00	
Total	345	344	344	334	326	
Net heat consumption P Room heat&hot water Industrial processes Total	J MM: H 2005 222 299	F4H3I1E21 2010 215 288	L1W3P3S3h 2015 202 277	1V3 2020 170 249	2030 176 194	
Total	521	503	480	419	370	
Heat generation PJ MM Electric heating From indiv.solar coll. Collective solar coll. Electrolytic converter Cogeneration heatpumps Motors Boilers From seasonstor. to HP Stand-alone heat pumps Total	: F4H311 2005 27.7 0.01 0.00 0.00 0.00 181 335 0.00 4.88	LE2L1W3P2 2010 22.4 0.01 0.00 0.00 185 317 0.00 5.48	3S3h1V3 2015 15.8 0.09 0.00 5.37 188 291 0.00 7.19	2020 9.26 0.36 2.54 0.30 7.67 182 239 0.00 6.88	2030 5.89 1.02 5.49 5.98 4.24 198 171 1.00 8.75	
Total	548	530	508	448	401	
Fuel consumption Total Waste Straw+wood Biogas Coal Oil Natural gas	2005 8.49 369 0.00	2010 8.44 477 5.45	E2L1W3P3S 2015 7.77 485 11.9 154 277 157	2020 6.28 451 16 0	2030 4.38 430 25.3 13.0 119 63.5	
Total	1154	1119	1093	925	655	
Fuel consumption in vehic PETROL DIESEL HYDROGEN	2005 93.3 90.9 0.00	PJ MM: H 2010 91.3 98.2 0.00	F4H3I1E2L 2015 85.5 98.7 0.00	1W3P3S3h 2020 74.2 92.4 1.47	1V3 2030 7.96 57.1 29.1	
			184			
CO2 emission, 10,000 tons Transportation Stationary units	2005 1354 5688	2010 1393 4349	2015 1355 3813	2020 1226 2612	2030 481 898	
			5167		1379	

Table 11e. DenmarkScenario B. Summary of physical results

Electricity consumption & Transportation Industrial processes Electric heating Stand-alone heat pumps Other Electrolysis,el.consum Export	export 2005 1.51 28.8 8.66 0.00 88.6 0.00 14.7	PJ N 2010 3.30 28.9 7.51 0.14 92.1 0.00 -0.00	M: F4H3I 2015 5.09 29.5 5.49 0.54 94.5 0.00 -0.00	1E2L1W3P 2020 8.79 29.6 3.16 0.63 91.1 2.08 5.58	3S3h1V3 2030 16.4 26.7 1.98 0.90 68.7 35.2 -0.00	
TOLAL	142	132	133	141	150	
Electricity generation Windpower Photovoltaic panels Hydropower Industrial cogenerat. Cogeneration stations Power stations Import Nuclear power Total	PJ MM 2005 26.1 0.00 7.92 92.4 38.1 0.00 0.00	: F4H3I1F 2010 35.2 0.24 0.00 7.92 78.1 15.7 17.1 0.00	22L1W3P3S 2015 55.5 0.59 0.00 7.92 75.8 16.2 0.80 0.00	3h1V3 2020 81.7 1.35 0.00 7.92 60.1 9.90 0.00 0.00	2030 97.6 4.39 0.00 7.92 44.3 0.00 15.2 0.00	
Total	165	154	157	161	169	
Net heat consumption P Room heat&hot water Industrial processes	J MM: 2005 196 90.0	F4H3I1E2I 2010 189 86.8	1W3P3S3h 2015 178 83.5	1V3 2020 150 75.1	2030 151 58.4	
Total	286	276	262	225	209	
Heat generation PJ MM Electric heating From indiv.solar coll. Collective solar coll. Electrolytic converter Cogeneration heatpumps Motors Boilers From seasonstor. to HP Stand-alone heat pumps Total	: F4H3I 2005 8.66 0.02 0.00 0.00 121 186 0.00 0.00	1E2L1W3P3 2010 7.51 0.02 0.00 0.00 120 178 0.00 0.53	3S3h1V3 2015 5.49 0.14 1.23 0.00 5.67 118 160 0.00 2.05	2020 3.16 0.64 5.98 0.31 10.7 101 133 0.50 2.35	2030 1.98 1.63 11.8 5.28 22.8 94.5 103 2.75 3.34	
Total	316	307	293	257	247	
Fuel consumption Total Waste Straw+wood Biogas Coal Oil Natural gas	2005 27.6 64.6 3.03 209 296	2010 27.5 80.7 4.16 95.3 279	2015 28.2 92.4 6.79 67.8	2020 20.3 100 12.0 39.4 229	5.48 122	
Total			673			
Fuel consumption in vehic PETROL DIESEL HYDROGEN	2005 113 83.3 0.00	2010 111 86.5 0.00	2015 104 87.1 0.00	2020 90.0 80.7 1.51	2030 27.7 45.1 25.7	
			191			
CO2 emission, 10,000 tons Transportation Stationary units	2005 1441 3865	2010 1450 2752	2015 1404 2409	2020 1255 1769	2030 536 1136	
Total Kyoto/EU target						

Table 12. Fuel pricesConsumer prices, excl. taxes and VAT

Fuel price development case 1

• • •	COAL	EUR/ton	2005 37	2010 37	2015 37	2020 37	2030 37
		EUR/GJ	1.5	1.5	1.5	1.5	1.5
	Crude oi 1 USD= (il USD/barrel).80 EUR	2005 55	2010 50	2015 50	2020 50	2030 50
	FUELOIL GASOIL PETROL DIESEL	EUR/1000 ltr EUR/GJ EUR/1000 ltr EUR/GJ EUR/1000 ltr EUR/GJ EUR/1000 ltr EUR/GJ	2005 468 13.8 497 13.9 510 13.9 497 13.9	2010 443 13.1 471 13.1 483 13.1 471 13.1	2015 443 13.1 471 13.1 483 13.1 471 13.1	2020 443 13.1 471 13.1 483 13.1 471 13.1	2030 443 13.1 471 13.1 483 13.1 471 13.1
	NATUR.GAS	S EUR/1000 m3 EUR/GJ	2005 238 6.1	2010 238 6.1	2015 238 6.1	2020 238 6.1	2030 238 6.1
Fuel price de	velopment	case 2					
	COAL	EUR/ton EUR/GJ	2005 37 1.5	2010 39 1.6	2015 47 1.9	2020 54 2.1	2030 69 2.7
	Crude oi 1 USD= (il USD/barrel).80 EUR	2005 55	2010 75	2015 79	2020 83	2030 90
	FUELOIL GASOIL PETROL DIESEL	EUR/1000 ltr EUR/GJ EUR/1000 ltr EUR/GJ EUR/1000 ltr EUR/GJ EUR/1000 ltr EUR/GJ	2005 468 13.8 497 13.9 510 13.9 497 13.9	2010 566 16.7 601 16.7 616 16.7 601 16.7	2015 584 17.2 620 17.3 636 17.3 620 17.3	2020 603 17.8 639 17.8 656 17.8 639 17.8	2030 639 18.8 678 18.9 696 18.9 678 18.9
	NATUR.GAS	5 EUR/1000 m3 EUR/GJ	2005 238 6.1	2010 322 8.2	2015 336 8.6	2020 351 9.0	2030 381 9.8
Fuel price de	velopment	case 3					
	COAL	EUR/ton EUR/GJ	2005 37 1.5	2010 48 1.9	2015 57 2.3	2020 66 2.6	2030 84 3.3
		il USD/barrel).80 EUR	2005 55	2010 70	2015 83	2020 95	2030 120
	FUELOIL GASOIL PETROL DIESEL	EUR/1000 ltr EUR/GJ EUR/1000 ltr EUR/GJ EUR/1000 ltr EUR/GJ EUR/GJ	2005 468 13.8 497 13.9 510 13.9 497 13.9	2010 541 16.0 575 16.0 590 16.0 575 16.0	2015 603 17.8 639 17.8 656 17.8 639 17.8	2020 664 19.6 704 19.6 722 19.6 704 19.6	2030 786 23.2 834 23.2 855 23.2 834 23.2

 EUR/GJ
 13.9
 16.0
 17.8
 19.6
 23.2

 2005
 2016
 2015
 2020
 2020
 NATUR.GAS EUR/1000 m320052010201520202030EUR/GJ2383934264585246.110.110.911.813.4

Table 13. Summaries of economic costs. All four countries total. Scenario A and B

r= 0% Summary of costs, year by year r= 5% Present value, discounted by 5%

Fuel prices development case 1:

Economic d	costs 1	000 million	EUR	
Total			A	В
	r= 0.0%	2005-2030	943.9	997.5
	r= 5.0%	2005-2030	546.4	590.1
Fossil fue	els		A	В
	r= 0.0%	2005-2030	645.5	440.7
	r= 5.0%	2005-2030	370.6	278.2
Local fuel	ls		A	В
	r= 0.0%	2005-2030	46.78	59.84
	r= 5.0%	2005-2030	27.04	34.08
El-import/	/export		A	В
-	r= 0.0%	2005-2030	-0.34	-0.38
	r= 5.0%	2005-2030	-0.12	-0.15
Renewable	energy	sources	A	В
	r= 0.0%	2005-2030	3.82	95.82
	r= 5.0%	2005-2030	2.38	49.04
Supply ins	stallati	ons	A	В
	r= 0.0%	2005-2030	248.1	338.6
	r= 5.0%	2005-2030	146.4	194.8
Buildings			A	В
2	r= 0.0%	2005-2030	0.00	63.03
	r= 5.0%	2005-2030	0.00	34.11

Fuel prices development case 2:

Economic d	cost	ts 10	000	mi	11i	on	EUR	
Total							A	В
	r=	0.0%	200)5-	203	0	1152	1124
	r=	5.0%	200)5-	203	0	650.1	659.2
Fossil fue	els						A	В
	r=	0.0%	200)5-	203	0	857.2	571.7
	r=	5.0%	200)5-	203	0	476.2	349.7
Local fuel	s						A	В
	r=	0.0%	200)5-	203	0	43.46	55.52
	r=	5.0%	200)5-	203	0	25.27	31.78
El-import/	/exp	oort					A	В
-	r=	0.0%	200)5-	203	0	-0.48	-0.52
	r=	5.0%	200)5-	203	0	-0.16	-0.20
Renewable	ene	erqy s	soui	rce	S		A	В
		0.0%				0	3.82	95.82
	r=	5.0%	200)5-	203	0	2.38	49.04
Supply ins	stal	llatio	ons				А	В
	r=	0.0%	200)5-	203	0	248.1	338.6
	r=	5.0%	200)5-	203	0	146.4	194.8
Buildings							А	В
- C	r=	0.0%	200)5-	203	0	0.00	63.03
		5.0%					0.00	34.11

Fuel prices development case 3: Economic costs 1000 million EUR A B r= 0.0% 2005-2030 1257 1189 r= 5.0% 2005-2030 693.8 687.9 Total Fossil fuels А В r= 0.0% 2005-2030 953.8 r= 5.0% 2005-2030 515.8 624.8 373.1 Local fuels А В r= 0.0% 2005-2030 r= 5.0% 2005-2030 52.50 67.31 37.17 29.40 A В El-import/export r= 0.0% 2005-2030 -0.84 -0.88

	r= 5.0%	2005-2030	-0.29	-0.33
Renewable	energy s	sources	A	В
		2005-2030	3.82	95.82
	r= 5.0%	2005-2030	2.38	49.04
Supply ins	stallatio	ons	A	В
	r= 0.0%	2005-2030	248.1	338.6
	r= 5.0%	2005-2030	146.4	194.8
Buildings			A	В
	r= 0.0%	2005-2030	0.00	63.03
	r= 5.0%	2005-2030	0.00	34.11

Table 14. The Nordic energy system as a whole.Annual and monthly energy balances in 2030

Year: Unit: PJ/year. Average monthly rate: Unit: GW

2030 Net Heat consumpt.: 1235.30 Heatcons.ConvUnits: 5.69 Indiv.Solar coll.: -7.17 EL heating : -33.75 Prim.DH net losses: 100.05	67.961 64 0.192 0 -0.052 -0 -2.446 -2	2 3 4.067 51.336 0.192 0.186 0.114 -0.214 2.261 -1.659 3.163 3.163	35.024	5 21.724 0.173 -0.383 -0.219 3.223	6 19.278 0.173 -0.424 -0.082 3.163	7 19.210 0.173 -0.382 -0.081 3.163	8 19.265 0.173 -0.340 -0.092 3.163	9 22.047 0.173 -0.265 -0.267 3.163	10 35.615 0.180 -0.145 -0.902 3.163	11 50.761 0.185 -0.064 -1.663 3.163	12 63.767 0.192 -0.039 -2.276 3.163
DH¢r.heat.cons: 1300.120	68.817 65	5.047 52.812	37.217	24.519	22.109	22.083	22.168	24.851	37.910	52.381	64.806
Coll.Solar coll. : 23.533 Cogen. Heat pumps : 32.455 Stand-alone H-pump: 88.803 Heat from motors : 513.702 Heat from boilers : 625.093 Heat from el.lysis: 21.367 DH from processes+: 16.014 Process DH surplus: 0.000 DH from processes-: -16.014 From seasonstorage: 0.010 Seasonstor. to HP : -4.855	2.743 2 6.060 5 28.518 26 30.492 28 0.839 0 0.508 0 0.000 0 -0.508 -0 0.976 0	0.368 0.696 2.508 1.986 5.788 4.530 5.991 21.431 3.619 23.518 0.773 0.652 0.508 0.508 0.000 0.000 0.508 -0.508 0.451 0.118 0.451 -0.118		$\begin{array}{c} 1.251\\ 0.166\\ 0.586\\ 8.988\\ 13.892\\ 0.441\\ 0.507\\ 0.000\\ -0.507\\ -0.806\\ 0.000\end{array}$	$\begin{array}{c} 1.450\\ 0.135\\ 0.266\\ 7.835\\ 13.012\\ 0.554\\ 0.508\\ 0.000\\ -0.508\\ -1.143\\ 0.000\\ \end{array}$	$\begin{array}{c} 1.248\\ 0.116\\ 0.256\\ 7.565\\ 13.006\\ 0.919\\ 0.508\\ 0.000\\ -0.508\\ -1.027\\ 0.000\\ \end{array}$	$\begin{array}{c} 1.112\\ 0.124\\ 0.304\\ 7.682\\ 13.035\\ 0.766\\ 0.508\\ 0.000\\ -0.508\\ -0.855\\ 0.000\\ \end{array}$	$\begin{array}{c} 0.866\\ 0.148\\ 0.814\\ 8.686\\ 13.967\\ 0.897\\ 0.508\\ 0.000\\ -0.508\\ -0.527\\ 0.000\\ \end{array}$	$\begin{array}{c} 0.472\\ 1.142\\ 2.353\\ 14.898\\ 18.298\\ 0.621\\ 0.508\\ 0.000\\ -0.508\\ 0.127\\ 0.000\\ \end{array}$	$\begin{array}{c} 0.203\\ 0.897\\ 4.420\\ 21.151\\ 23.352\\ 0.603\\ 0.508\\ 0.000\\ -0.508\\ 1.753\\ 0.000\\ \end{array}$	0.121 1.722 5.845 27.120 28.690 0.632 0.508 0.000 -0.508 0.979 -0.303
DH&ctr.heat prod. : 1300.120	68.817 65	5.047 52.812	37.217	24.519	22.109	22.083	22.168	24.851	37.910	52.381	64.806
Seasonal heat storage capac:	ty, 1000 m3	: 33230									
EL-consumption827.373EL-cons.Conv.Units:2.648EL-cons.,DH nets28.574EL-cons.,DHboilers:20.842Electric heating33.758St.alone heatpumps:24.799Transport76.443EL losses in grid:74.133El-export7.58	0.085 0 1.316 1 1.068 1 2.446 2 1.857 1 2.424 2 2.595 2	5.240 26.335 0.086 0.086 1.259 1.075 1.020 0.814 2.261 1.659 1.750 1.287 2.424 2.424 2.528 2.409 0.046 0.311	26.286 0.083 0.841 0.600 0.896 0.664 2.424 2.219 0.084	26.701 0.084 0.661 0.428 0.219 0.130 2.424 2.180 0.548	26.929 0.086 0.628 0.388 0.082 0.053 2.424 2.234 0.343	25.448 0.084 0.628 0.387 0.081 0.046 2.424 2.300 0.317	26.435 0.083 0.628 0.388 0.092 0.057 2.424 2.299 0.305	25.973 0.082 0.661 0.430 0.267 0.172 2.424 2.345 0.014	25.781 0.082 0.858 0.615 0.902 0.535 2.424 2.274 0.269	25.725 0.082 1.069 0.808 1.663 1.159 2.424 2.343 0.319	26.514 0.085 1.252 1.002 2.276 1.728 2.424 2.481 0.062
EL-cons., total : 1096.15	38.520 37	7.595 36.402	34.096	33.375	33.166	31.717	32.711	32.368	33.739	35.593	37.824
EL-prod., motors : 264.390 To cogen.H.pumps : -10.60 EL-prod., Windmills: 360.494 EL-prod.photovolt.: 17.57 EL-prod.hydropower: 606.755 EL-cons., el.lysis : -142.449 El-prod., total : 1096.155	-0.799 -0 14.671 14 0.154 0 14.760 14 -5.591 -5	1.354 10.886 0.872 -0.704 1.216 13.428 0.294 0.522 1.760 16.614 5.156 -4.344 7.595 36.402	-0.216 10.825 0.737 18.468 -2.893	4.352 -0.049 9.858 0.907 21.248 -2.942 33.375	3.780 -0.037 8.970 1.045 23.102 -3.694 33.166	3.609 -0.030 9.331 0.905 24.029 -6.126 31.717	3.678 -0.033 9.331 0.811 24.029 -5.105 32.711	4.148 -0.043 10.503 0.640 23.102 -5.982 	7.263 -0.362 11.215 0.367 19.394 -4.138 33.739	11.288 -0.310 11.844 0.180 16.614 -4.023 35.593	14.748 -0.581 12.984 0.124 14.760 -4.210 37.824

"motor" stands for any power generation unit (engine, steamturbine, fuel cell, etc.)

"Stand-alone H.pumps" are heat pumps in individual buildings.

Table 15. DenmarkAnnual and monthly energy balances in 2030

Year: Unit: PJ/year. Average monthly rate: Unit: GW

2030 209.427 1.800 -1.629 -1.982 30.261	1 12.480 0.060 -0.012 -0.150 0.957	2 11.883 0.060 -0.026 -0.141 0.957	3 9.494 0.060 -0.048 -0.104 0.957	4 5.612 0.054 -0.070 -0.047 0.975	5 2.825 0.054 -0.087 -0.005 0.975	6 2.527 0.054 -0.096 -0.000 0.957	7 2.527 0.054 -0.087 -0.001 0.957	8 2.527 0.054 -0.077 -0.001 0.957	9 2.825 0.054 -0.060 -0.007 0.957	10 6.210 0.060 -0.033 -0.058 0.957	11 9.494 0.060 -0.015 -0.107 0.957	12 11.286 0.060 -0.009 -0.133 0.957
237.877	13.335	12.733	10.358	6.525	3.762	3.441	3.450	3.458	3.768	7.135	10.390	12.161
$\begin{array}{c} 11.769\\ 22.818\\ 3.343\\ 94.519\\ 102.891\\ 5.279\\ 16.014\\ 0.000\\ -16.014\\ 0.010\\ -2.752\end{array}$	$\begin{array}{c} 0.082\\ 1.791\\ 0.244\\ 5.843\\ 5.167\\ 0.207\\ 0.508\\ 0.000\\ -0.508\\ 0.496\\ -0.496\end{array}$	$\begin{array}{c} 0.183\\ 1.638\\ 0.232\\ 5.597\\ 4.892\\ 0.191\\ 0.508\\ 0.000\\ -0.508\\ 0.433\\ -0.433\\ -0.433\end{array}$	0.348 1.318 0.178 4.319 4.035 0.161 0.508 0.000 -0.508 0.118 -0.118	$\begin{array}{c} 0.503\\ 0.492\\ 0.082\\ 2.498\\ 2.864\\ 0.107\\ 0.507\\ 0.000\\ -0.507\\ -0.022\\ 0.000\\ \end{array}$	0.626 0.166 0.010 1.195 2.122 0.109 0.507 0.000 -0.507 -0.466 0.000	0.726 0.135 0.000 1.025 2.036 0.137 0.508 0.000 -0.508 -0.618 0.000	$\begin{array}{c} 0.625\\ 0.116\\ 0.002\\ 0.992\\ 2.043\\ 0.227\\ 0.508\\ 0.000\\ -0.508\\ -0.555\\ 0.000\\ \end{array}$	$\begin{array}{c} 0.557\\ 0.124\\ 0.004\\ 1.006\\ 2.050\\ 0.189\\ 0.508\\ 0.000\\ -0.508\\ -0.471\\ 0.000\\ \end{array}$	$\begin{array}{c} 0.433\\ 0.147\\ 0.015\\ 1.136\\ 2.140\\ 0.222\\ 0.508\\ 0.000\\ -0.508\\ -0.324\\ 0.000\\ \end{array}$	$\begin{array}{c} 0.235\\ 0.872\\ 0.102\\ 2.725\\ 3.059\\ 0.153\\ 0.508\\ 0.000\\ -0.508\\ -0.012\\ 0.000\end{array}$	$\begin{array}{c} 0.101\\ 0.885\\ 0.184\\ 4.145\\ 4.030\\ 0.149\\ 0.508\\ 0.000\\ -0.508\\ 0.896\\ 0.896\\ 0.000\\ \end{array}$	$\begin{array}{c} 0.060\\ 0.998\\ 0.221\\ 5.485\\ 4.713\\ 0.156\\ 0.508\\ 0.000\\ -0.508\\ 0.528\\ 0.000\\ \end{array}$
237.877	13.335	12.733	10.358	6.525	3.762	3.441	3.450	3.458	3.768	7.135	10.390	12.161
ge capacit	y, 1000	m3 : 188	03									
95.439 0.868 5.488 1.982 0.905 16.368 9.971 -15.168	3.123 0.027 0.282 0.164 0.150 0.072 0.519 0.359 1.108	$\begin{array}{c} 3.073\\ 0.028\\ 0.271\\ 0.156\\ 0.141\\ 0.067\\ 0.519\\ 0.347\\ 1.049\end{array}$	3.038 0.029 0.227 0.130 0.104 0.048 0.519 0.323 0.347	2.990 0.027 0.155 0.091 0.047 0.020 0.519 0.282 -0.460	3.031 0.028 0.104 0.064 0.005 0.002 0.519 0.278 -1.131	3.043 0.029 0.098 0.061 0.000 0.519 0.290 -1.533	2.926 0.028 0.098 0.061 0.001 0.000 0.519 0.324 -2.027	3.041 0.027 0.098 0.061 0.001 0.519 0.315 -1.894	2.961 0.027 0.103 0.065 0.007 0.003 0.519 0.325 -1.925	2.963 0.028 0.166 0.098 0.058 0.023 0.519 0.304 -0.869	2.988 0.027 0.227 0.131 0.107 0.047 0.519 0.314 0.492	3.139 0.027 0.260 0.151 0.133 0.061 0.519 0.333 1.071
119.092	5.804	5.650	4.765	3.671	2.900	2.506	1.930	2.170	2.084	3.291	4.851	5.695
59.634 -7.380 97.635 4.394 0.000 -35.192 119.092	3.963 -0.557 3.741 0.039 0.000 -1.381 5.804	3.722 -0.518 3.647 0.074 0.000 -1.274 5.650	2.624 -0.442 3.526 0.131 0.000 -1.073 4.765	1.388 -0.160 2.974 0.184 0.000 -0.715 3.671	0.636 -0.049 2.812 0.227 0.000 -0.727 2.900	0.531 -0.037 2.664 0.261 0.000 -0.913 2.506	0.489 -0.030 2.758 0.226 0.000 -1.513 1.930	0.503 -0.033 2.758 0.203 0.000 -1.261 2.170	0.565 -0.042 2.879 0.160 0.000 -1.478 2.084	1.494 -0.273 3.001 0.092 0.000 -1.022 3.291	2.997 -0.305 3.108 0.045 0.000 -0.994 4.851	3.781 -0.360 3.283 0.031 0.000 -1.040 5.695
	209.427 1.800 -1.629 -1.982 30.261 -237.877 11.769 22.818 3.343 94.519 102.891 5.279 16.014 0.000 -16.014 0.010 -2.752 237.877 ge capacit 95.439 0.868 5.488 3.238 1.982 0.905 16.368 9.971 -15.168 9.971 -15.168 1.982 0.905 16.368 9.971 -15.168 -15.168 9.971 -15.168	209.427 12.480 1.800 0.060 -1.629 -0.012 -1.982 -0.150 30.261 0.957 237.877 13.335 11.769 0.082 22.818 1.791 3.343 0.244 94.519 5.843 102.891 5.167 5.279 0.207 16.014 0.508 0.000 0.000 -16.014 -0.508 0.010 0.496 -2.752 -0.496 237.877 13.335 ge capacity, 1000 95.439 3.123 0.868 0.027 5.488 0.282 3.238 0.164 1.982 0.150 0.905 0.519 9.971 0.359 -15.168 1.108 119.092 5.804 59.634 3.963 -7.380 -0.557 97.635 3.741 4.394 0.039 0.000 0.000 -35.192 -1.381	209.427 12.480 11.883 1.800 0.060 0.060 -1.629 -0.012 -0.026 -1.982 -0.150 -0.141 30.261 0.957 0.957 237.877 13.335 12.733 11.769 0.082 0.183 22.818 1.791 1.638 3.343 0.244 0.232 94.519 5.843 5.597 102.891 5.167 4.892 5.279 0.207 0.191 16.014 0.508 0.508 0.000 0.000 0.000 -16.014 -0.508 -0.508 0.010 0.496 0.433 -2.752 -0.496 -0.433 237.877 13.335 12.733 ge capacity, 1000 m3 : 188 95.439 3.123 3.073 0.868 0.027 0.028 5.488 0.282 0.271 3.238 0.164 0.156 1.982 0.150 0.141 0.905 0.072 0.067 16.368 0.519 0.519 9.971 0.359 0.347 -15.168 1.108 1.049 119.092 5.804 5.650 59.634 3.963 3.722 -7.380 -0.557 -0.518 97.635 3.741 3.647 4.394 0.039 0.074 0.000 0.000 0.000 -35.192 -1.381 -1.274	209.427 12.480 11.883 9.494 1.800 0.060 0.060 0.060 -1.629 -0.012 -0.026 -0.048 -1.982 -0.150 -0.141 -0.104 30.261 0.957 0.957 0.957 237.877 13.335 12.733 10.358 11.769 0.082 0.183 0.348 22.818 1.791 1.638 1.318 3.343 0.244 0.232 0.178 94.519 5.843 5.597 4.319 102.891 5.167 4.892 4.035 5.279 0.207 0.191 0.161 16.014 0.508 0.508 0.508 0.000 0.000 0.000 0.000 -16.014 -0.508 -0.508 -0.508 0.010 0.496 0.433 0.118 -2.752 -0.496 -0.433 -0.118 237.877 13.335 12.733 10.358 ge capacity, 1000 m3 : 18803 95.439 3.123 3.073 3.038 0.868 0.027 0.028 0.029 5.488 0.282 0.271 0.227 3.238 0.164 0.156 0.130 1.982 0.150 0.141 0.104 0.905 0.072 0.067 0.048 1.982 0.150 0.141 0.104 0.905 0.072 0.067 0.048 1.6368 0.519 0.519 0.519 9.971 0.359 0.347 0.323 -15.168 1.108 1.049 0.347 119.092 5.804 5.650 4.765 59.634 3.963 3.722 2.624 -7.380 -0.557 -0.518 -0.442 97.635 3.741 3.647 3.526 4.394 0.039 0.074 0.131 0.000 0.000 0.000	209.427 12.480 11.883 9.494 5.612 1.800 0.060 0.060 0.060 0.054 -1.629 -0.012 -0.026 -0.048 -0.070 -1.982 -0.150 -0.141 -0.104 -0.047 30.261 0.957 0.957 0.957 0.975 237.877 13.335 12.733 10.358 6.525 11.769 0.082 0.183 0.348 0.503 22.818 1.791 1.638 1.318 0.492 3.343 0.244 0.232 0.178 0.082 94.519 5.843 5.597 4.319 2.498 102.891 5.167 4.892 4.035 2.864 5.279 0.207 0.191 0.161 0.107 16.014 0.508 0.508 0.508 0.507 0.000 0.000 0.000 0.000 0.000 -16.014 -0.508 -0.508 -0.508 -0.507 0.010 0.496 0.433 0.118 -0.022 -2.752 -0.496 -0.433 -0.118 0.000 -237.877 13.335 12.733 10.358 6.525 ge capacity, 1000 m3 : 18803 95.439 3.123 3.073 3.038 2.990 0.868 0.027 0.028 0.029 0.027 5.488 0.282 0.271 0.227 0.155 3.238 0.164 0.156 0.130 0.091 1.982 0.150 0.141 0.104 0.047 0.905 0.072 0.067 0.048 0.020 16.368 0.519 0.519 0.519 0.519 9.971 0.359 0.347 0.323 0.282 -15.168 1.108 1.049 0.347 -0.460 97.635 3.741 3.647 3.526 2.974 4.394 0.039 0.074 0.131 0.184 0.000 -35.192 -1.381 -1.274 -1.073 -0.715	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	209.427 12.480 11.883 9.494 5.612 2.825 2.527 2.527 1.800 0.060 0.064 0.054 0.054 0.054 0.054 0.054 -1.629 -0.122 -0.026 -0.048 -0.070 -0.087 -0.096 -0.087 1.982 -0.150 -0.141 -0.047 -0.0975 0.975 0.957 0.957 237.877 13.335 12.733 10.358 6.525 3.762 3.441 3.450 11.769 0.082 0.183 0.348 0.503 0.626 0.726 0.625 22.818 1.791 1.638 1.318 0.492 0.166 0.135 0.116 3.43 0.244 0.232 0.178 0.082 0.010 0.000 0.002 94.519 5.843 5.597 4.319 2.498 1.195 1.025 0.922 102.891 5.167 4.892 4.035 2.864 2.122 2.036 2.043 5.279 0.207 0.191 0.161 0.107 0.190	209.427 12.480 11.883 9.494 5.612 2.825 2.527 2.527 2.527 1.800 0.060 0.060 0.054 0.054 0.054 0.054 0.054 -1.629 -0.102 -0.026 -0.048 -0.070 -0.087 -0.000 -0.001 -0.001 30.261 0.957 0.957 0.957 0.957 0.957 0.957 237.877 13.335 12.733 10.358 6.525 3.762 3.441 3.450 3.458 11.769 0.082 0.183 0.348 0.503 0.626 0.726 0.625 0.557 22.818 1.791 1.638 1.318 0.492 0.166 0.135 0.116 0.124 3.433 0.244 0.232 0.178 0.082 0.010 0.000 0.002 0.004 94.519 5.843 5.597 4.319 2.498 1.195 1.025 0.992 1.006 102.891 5.167 4.892 4.035 2.864 2.122 2.043 2.050	209.427 12.480 11.883 9.494 5.612 2.825 2.527 2.527 2.527 2.527 2.527 2.625 1.800 0.060 0.060 0.064 0.057 0.957 <	209.427 12.480 11.883 9.494 5.612 2.2825 2.527 2.527 2.825 6.210 1.800 0.060 0.056 0.054 0.054 0.054 0.087 0.050 0.054 0.087 0.057 0.057 0.057 0.097 0.060 0.060 0.060 0.001 -0.007 -0.068 0.057 0.956 0.557 0.433	209.427 12.480 11.883 9.494 5.612 2.825 2.527 2.527 2.825 6.210 9.494 1.800 0.060 0.060 0.064 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.957 <

"motor" stands for any power generation unit (engine, steamturbine, fuel cell, etc.)

"Stand-alone H.pumps" are heat pumps in individual buildings.

Table 16. Electricity import and export in 2030.Annual totals in PJ.Monthly average rates in GW

NORWAY	2030	1	2	3	4	5	6	7	8	9	10	11	12
El-consumption	253.235	9.186	9.061	8.663	7.986	7.368	7.347	7.040	7.243	7.327	7.672	8.363	9.104
El-production	428.609	11.197	11.216	12.192	13.160	14.609	15.607	16.004	16.066	15.817	13.742	12.141	11.342
El-export	175.374	2.011	2.155	3.529	5.174	7.242	8.259	8.964	8.823	8.489	6.071	3.778	2.238
SWEDEN	2030	1	2	3	4	5	6	7	8	9	10	11	12
El-consumption	415.150	14.372	14.137	13.679	13.000	12.714	12.778	12.178	12.560	12.361	12.690	13.347	14.156
El-production	361.343	13.435	13.150	12.593	11.346	10.709	10.409	9.774	10.185	9.981	11.014	12.089	12.812
El-export	-53.807	-0.937	-0.987	-1.087	-1.654	-2.005	-2.369	-2.404	-2.375	-2.380	-1.676	-1.258	-1.344
FINLAND	2030	1	2	3	4	5	6	7	8	9	10	11	12
El-consumption	285.928	9.998	9.750	9.330	8.895	8.715	8.658	8.225	8.541	8.657	8.948	9.205	9.879
El-production	187.115	8.085	7.579	6.852	5.919	5.157	4.644	4.009	4.291	4.486	5.691	6.511	7.976
El-export	-98.813	-1.914	-2.171	-2.478	-2.975	-3.558	-4.014	-4.215	-4.250	-4.171	-3.257	-2.694	-1.903
DENMARK	2030	1	2	3	4	5	6	7	8	9	10	11	12
El-consumption	134.260	4.697	4.602	4.418	4.131	4.030	4.039	3.957	4.063	4.009	4.159	4.359	4.624
El-production	119.092	5.804	5.650	4.765	3.671	2.900	2.506	1.930	2.170	2.084	3.291	4.851	5.695
El-export	-15.168	1.108	1.049	0.347	-0.460	-1.131	-1.533	-2.027	-1.894	-1.925	-0.869	0.492	1.071
Nordic region	2030	1	2	3	4	5	6	7	8	9	10	11	12
El-eksport, total	7.586	0.268	0.046	0.311	0.084	0.548	0.343	0.317	0.305	0.014	0.269	0.319	0.062

Table 17. Marginal changes in CO2 emission as a result of marginal changes in electricity consumption or production.

Internal emission is emission from the Nordic countries.

External emission is additional emission (+/-) in other countries because of changes in electricity export from the Nordic countries. Emission assessments in other countries are based on the assumption that additional electricity generation in these countries takes place in a mix of coal-fired and gas-fired steam turbine power plants with certain average efficiencies.

The external emissions are relatively small as compared with the internal emissions because the Nordic energy system is modelled as a relatively closed system (see section 2).

Influence on CO2 emission and fuel consumption of changes in electricity consumption in the end-use system.

Electrici	ty consumptio	n: + 1 PJ			
	Fuel	consumption	CO2-emi	ssion	
		ΡJ	10.000	tons	
			Total	Internal	External
	2010	1.950	19.134	17.797	1.337
Average	2005-2030	1.239	10.116	9.544	0.571
	2030	0.888	6.917	6.033	0.885

Influence on CO2 emission and fuel consumption of changes in Windpower

Windpower: + 1 PJ Fuel consumption CO2-emission PJ 10.000 tons Total Internal External 2010 -2.347 -19.978 -19.991 0.013 Average 2005-2030 -1.710 -12.389 -11.789 -0.600 2030 -1.203 -6.786 -5.995 -0.791

Influence on CO2 emission and fuel consumption of changes in Hydropower

Hydropower	: +	1	ΡJ				
			Fuel	consumption	CO2-em:	ission	
				ΡJ	10.000	tons	
					Total	Internal	External
		20	010	-2.338	-19.938	-18.399	-1.539
Average	2005	5-20	030	-2.035	-16.072	-14.723	-1.348

Table 18. Comparison with a stronger-growth scenario

Growth and efficiency parameters:

Electrical appliances I	ndex 200	5=100				
Scenario B:	2005	2010	2015	2020	2030	
Stock development El.consumption devel.	100 100	119 103	129 105	133 101	139 78	
Efficiency factor		0.86	0.81	0.76	0.57	
Stronger growth: Stock development	100	121	136	148	161	
El.consumption devel.	100	104 0.86	108	108	90 0.56	
Efficiency factor	1.00	0.00	0.79	0.72	0.50	
Buildings stock Index Scenario B:	2005=100 2005	2010	2015	2020	2030	
Heated floor area	100	102	105	107	111	
Net heat consumption Consumption per m2	100 1.00	97 0.94	91 0.87	76 0.71	77 0.69	
Stronger growth:						
Heated floor area Net heat consumption	100 100	104 98	108 93	113 80	121 83	
Consumption per m2	1.00	0.94	0.86	0.70	0.69	
-	ndex 200		0015	0000	0000	
Scenario B: Production quantities	2005 100	2010 102	2015 105	2020 107	2030 111	
Stronger growth:	100	104	108	113	122	
Production quantities	100	104	108	113	122	
Transportation, persons Scenario B:	Index 20 2005	2010 2010	2015	2020	2030	
Total	100	107	113	116	110	
Cars Public transport	0.77 0.23	0.77 0.23	0.76 0.24	0.75 0.25	0.57 0.43	
Stronger growth:					100	
Total Cars	100 0.77	107 0.77	113 0.76	118 0.75	123 0.57	
Public transport	0.23	0.23	0.24	0.25	0.43	
	Index 20					
Scenario B: Total	2005 100	2010 107	2015 113	2020 116	2030 110	
Vans and trucks	0.70	0.69	0.69	0.67	0.49	
Trains and ships Stronger growth:	0.30	0.31	0.89	0.33	0.51	
Trains and ships Stronger growth: Total	0.30 100	0.31 107	0.31 113	0.33 118	0.51 123	
Trains and ships Stronger growth:	0.30	0.31	0.31	0.33	0.51	
Trains and ships Stronger growth: Total Vans and trucks	0.30 100 0.70 0.30	0.31 107 0.69 0.31	0.31 113 0.69 0.31	0.33 118 0.67 0.33	0.51 123 0.49 0.51	• countries
Trains and ships Stronger growth: Total Vans and trucks Trains and ships Summary of fuel and CO2	0.30 100 0.70 0.30 2 emisssi	0.31 107 0.69 0.31	0.31 113 0.69 0.31	0.33 118 0.67 0.33	0.51 123 0.49 0.51	• countries
Trains and ships Stronger growth: Total Vans and trucks Trains and ships Summary of fuel and CO2 Fossil fuels Scenario B:	0.30 100 0.70 0.30 ? emisssi PJ 2005	0.31 107 0.69 0.31 <i>on resu</i> .	0.31 113 0.69 0.31 Its. Tot 2015	0.33 118 0.67 0.33 cal for 2020	0.51 123 0.49 0.51 all four 2030	countries
Trains and ships Stronger growth: Total Vans and trucks Trains and ships Summary of fuel and CO2 Fossil fuels Scenario B:	0.30 100 0.70 0.30 ? emisssi PJ 2005	0.31 107 0.69 0.31 <i>on resu</i> .	0.31 113 0.69 0.31 Its. Tot 2015	0.33 118 0.67 0.33 cal for 2020	0.51 123 0.49 0.51 all four 2030	countries
Trains and ships Stronger growth: Total Vans and trucks Trains and ships Summary of fuel and CO2 Fossil fuels Scenario B:	0.30 100 0.70 0.30 ? emisssi PJ 2005	0.31 107 0.69 0.31 <i>on resu</i> .	0.31 113 0.69 0.31 Its. Tot 2015	0.33 118 0.67 0.33 cal for 2020	0.51 123 0.49 0.51 all four 2030	countries
Trains and ships Stronger growth: Total Vans and trucks Trains and ships Summary of fuel and CO2 Fossil fuels Scenario B:	0.30 100 0.70 0.30 ? emisssi PJ 2005	0.31 107 0.69 0.31 <i>on resu</i> .	0.31 113 0.69 0.31 Its. Tot 2015	0.33 118 0.67 0.33 cal for 2020	0.51 123 0.49 0.51 all four 2030	countries
Trains and ships Stronger growth: Total Vans and trucks Trains and ships Summary of fuel and CO2 Fossil fuels Scenario B: Coal, int. Coal, ext. Oil Natural gas, int. Natural gas, ext.	0.30 100 0.70 0.30 emisssi PJ 2005 600 0.00 1458 424 0.00	0.31 107 0.69 0.31 on resu 2010 389 0.02 1306 456 0.01	0.31 113 0.69 0.31 1ts. Tot 2015 340 -1.02 1212 466 -0.25	0.33 118 0.67 0.33 cal for 2020 225 -3.80 1045 370 -0.95	0.51 123 0.49 0.51 all four 2030 66.9 -14.3 541 281 -3.57	countries
Trains and ships Stronger growth: Total Vans and trucks Trains and ships Summary of fuel and CO2 Fossil fuels Scenario B: Coal, int. Coal, ext. Oil Natural gas, int. Natural gas, ext. Total	0.30 100 0.70 0.30 PJ 2005 600 0.00 1458 424 0.00 2482	0.31 107 0.69 0.31 on resu 2010 389 0.02 1306 456 0.01 2151	0.31 113 0.69 0.31 Its. Tot 2015 340 -1.02 1212 466 -0.25 2016	0.33 118 0.67 0.33 cal for 2020 225 -3.80 1045 370 -0.95 -1635	0.51 123 0.49 0.51 all four 2030 66.9 -14.3 541 281 -3.57 871	countries
Trains and ships Stronger growth: Total Vans and trucks Trains and ships Summary of fuel and CO2 Fossil fuels Scenario B: Coal, int. Coal, ext. Oil Natural gas, int. Natural gas, ext. Total	0.30 100 0.70 0.30 PJ 2005 600 0.00 1458 424 0.00 2482	0.31 107 0.69 0.31 on resu 2010 389 0.02 1306 456 0.01 2151	0.31 113 0.69 0.31 Its. Tot 2015 340 -1.02 1212 466 -0.25 2016	0.33 118 0.67 0.33 cal for 2020 225 -3.80 1045 370 -0.95 -1635	0.51 123 0.49 0.51 all four 2030 66.9 -14.3 541 281 -3.57 871	• countries
Trains and ships Stronger growth: Total Vans and trucks Trains and ships Summary of fuel and CO2 Fossil fuels Scenario B: Coal, int. Coal, ext. Oil Natural gas, int. Natural gas, ext. Total	0.30 100 0.70 0.30 PJ 2005 600 0.00 1458 424 0.00 2482	0.31 107 0.69 0.31 on resu 2010 389 0.02 1306 456 0.01 2151	0.31 113 0.69 0.31 Its. Tot 2015 340 -1.02 1212 466 -0.25 2016	0.33 118 0.67 0.33 cal for 2020 225 -3.80 1045 370 -0.95 -1635	0.51 123 0.49 0.51 all four 2030 66.9 -14.3 541 281 -3.57 871	countries
Trains and ships Stronger growth: Total Vans and trucks Trains and ships Summary of fuel and CO2 Fossil fuels Scenario B: Coal, int. Coal, ext. Oil Natural gas, int. Natural gas, ext. Total	0.30 100 0.70 0.30 PJ 2005 600 0.00 1458 424 0.00 2482	0.31 107 0.69 0.31 on resu 2010 389 0.02 1306 456 0.01 2151	0.31 113 0.69 0.31 Its. Tot 2015 340 -1.02 1212 466 -0.25 2016	0.33 118 0.67 0.33 cal for 2020 225 -3.80 1045 370 -0.95 -1635	0.51 123 0.49 0.51 all four 2030 66.9 -14.3 541 281 -3.57 871	countries
Trains and ships Stronger growth: Total Vans and trucks Trains and ships Summary of fuel and CO2 Fossil fuels Scenario B: Coal, int. Coal, ext. Oil Natural gas, int. Natural gas, ext.	0.30 100 0.70 0.30 PJ 2005 600 0.00 1458 424 0.00 2482 600 0.00 1458 424 0.00 1458 424 0.00	0.31 107 0.69 0.31 on resu. 2010 389 0.02 1306 456 0.01 2151 413 -0.01 1315 469 -0.00	0.31 113 0.69 0.31 1ts. Tot 2015 340 -1.02 1212 466 -0.25 2016 388 -0.01 1225 499 -0.00	0.33 118 0.67 0.33 cal for 2020 225 -3.80 1045 370 -0.95 -1635 305 -2.34 1083 428 -0.59	0.51 123 0.49 0.51 all four 2030 66.9 -14.3 541 281 -3.57 871 73.2 -5.59 683 333 -1.40	countries
Trains and ships Stronger growth: Total Vans and trucks Trains and ships Summary of fuel and CO2 Fossil fuels Scenario B: Coal, int. Coal, ext. Oil Natural gas, int. Natural gas, int. Stronger growth: Coal, int. Coal, ext. Oil, int. Natural gas, int. Natural gas, ext. Total	0.30 100 0.70 0.30 2 emisssi PJ 2005 600 0.00 1458 424 0.00 2482 600 0.00 1458 424 0.00 2482	0.31 107 0.69 0.31 on resu. 2010 389 0.02 1306 456 0.01 2151 413 -0.01 1315 469 -0.00 2198	0.31 113 0.69 0.31 1ts. Tot 2015 340 -1.02 1212 466 -0.25 2016 388 -0.01 1225 499 -0.00 2112	0.33 118 0.67 0.33 cal for 2020 225 -3.80 1045 370 -0.95 -1635 305 -2.34 1083 428 -0.59 -1814	0.51 123 0.49 0.51 all four 2030 66.9 -14.3 541 -3.57 871 73.2 -5.59 683 333 -1.40 1082	countries
Trains and ships Stronger growth: Total Vans and trucks Trains and ships Summary of fuel and CO2 Fossil fuels Scenario B: Coal, int. Coal, ext. Oil Natural gas, int. Natural gas, int. Stronger growth: Coal, int. Coal, ext. Oil, int. Natural gas, int. Natural gas, ext. Total	0.30 100 0.70 0.30 2 emisssi PJ 2005 600 0.00 1458 424 0.00 2482 600 0.00 1458 424 0.00 2482	0.31 107 0.69 0.31 on resu. 2010 389 0.02 1306 456 0.01 2151 413 -0.01 1315 469 -0.00 2198	0.31 113 0.69 0.31 1ts. Tot 2015 340 -1.02 1212 466 -0.25 2016 388 -0.01 1225 499 -0.00 2112	0.33 118 0.67 0.33 cal for 2020 225 -3.80 1045 370 -0.95 -1635 305 -2.34 1083 428 -0.59 -1814	0.51 123 0.49 0.51 all four 2030 66.9 -14.3 541 -3.57 871 73.2 -5.59 683 333 -1.40 1082	countries
Trains and ships Stronger growth: Total Vans and trucks Trains and ships Summary of fuel and CO2 Fossil fuels Scenario B: Coal, int. Coal, ext. Oil Natural gas, int. Natural gas, int. Stronger growth: Coal, int. Coal, ext. Oil, int. Natural gas, int. Natural gas, ext. Total	0.30 100 0.70 0.30 2 emisssi PJ 2005 600 0.00 1458 424 0.00 2482 600 0.00 1458 424 0.00 2482	0.31 107 0.69 0.31 on resu. 2010 389 0.02 1306 456 0.01 2151 413 -0.01 1315 469 -0.00 2198	0.31 113 0.69 0.31 1ts. Tot 2015 340 -1.02 1212 466 -0.25 2016 388 -0.01 1225 499 -0.00 2112	0.33 118 0.67 0.33 cal for 2020 225 -3.80 1045 370 -0.95 -1635 305 -2.34 1083 428 -0.59 -1814	0.51 123 0.49 0.51 all four 2030 66.9 -14.3 541 -3.57 871 73.2 -5.59 683 333 -1.40 1082	countries
Trains and ships Stronger growth: Total Vans and trucks Trains and ships Summary of fuel and CO2 Fossil fuels Scenario B: Coal, int. Coal, ext. Oil Natural gas, int. Natural gas, int. Stronger growth: Coal, int. Coal, ext. Oil, int. Natural gas, int. Natural gas, ext. Total	0.30 100 0.70 0.30 2 emisssi PJ 2005 600 0.00 1458 424 0.00 2482 600 0.00 1458 424 0.00 2482	0.31 107 0.69 0.31 on resu. 2010 389 0.02 1306 456 0.01 2151 413 -0.01 1315 469 -0.00 2198	0.31 113 0.69 0.31 1ts. Tot 2015 340 -1.02 1212 466 -0.25 2016 388 -0.01 1225 499 -0.00 2112	0.33 118 0.67 0.33 cal for 2020 225 -3.80 1045 370 -0.95 -1635 305 -2.34 1083 428 -0.59 -1814	0.51 123 0.49 0.51 all four 2030 66.9 -14.3 541 -3.57 871 73.2 -5.59 683 333 -1.40 1082	countries
Trains and ships Stronger growth: Total Vans and trucks Trains and ships Summary of fuel and CO2 Fossil fuels Scenario B: Coal, int. Coal, ext. Oil Natural gas, int. Natural gas, int. Natural gas, int. Coal, ext. Oil, int. Natural gas, int. Natural gas, int. Natural gas, ext. Total CO2 emission 10.000 ton Scenario B: Transportation Stationary units, int. Stationary units, ext. Total	0.30 100 0.70 0.30 2 emisssi PJ 2005 600 0.00 1458 424 0.00 2482 600 0.00 1458 424 0.00 2482	0.31 107 0.69 0.31 on resu. 2010 389 0.02 1306 456 0.01 2151 413 -0.01 1315 469 -0.00 2198 2010 6786 10455 0.27	0.31 113 0.69 0.31 1ts. Tot 2015 340 -1.02 1212 466 -0.25 2016 388 -0.01 1225 499 -0.00 2112 2015 6575 9211 -11.1	0.33 118 0.67 0.33 cal for 2020 225 -3.80 1045 370 -0.95 -1635 305 -2.34 1083 428 -0.59 -1814 2020 5891 6765 -41.6	0.51 123 0.49 0.51 all four 2030 66.9 -14.3 541 281 -3.57 871 73.2 -5.59 683 333 -1.40 1082 2030 2620 3669 -156	countries
Trains and ships Stronger growth: Total Vans and trucks Trains and ships Summary of fuel and CO2 Fossil fuels Scenario B: Coal, int. Coal, ext. Oil Natural gas, int. Natural gas, int. Natural gas, int. Coal, ext. Oil, int. Natural gas, int. Natural gas, int. Natural gas, ext. Total CO2 emission 10.000 ton Scenario B: Transportation Stationary units, int. Stationary units, ext. Total	0.30 100 0.70 0.30 PJ 2005 600 0.00 1458 424 0.00 2482 600 0.00 1458 424 0.00 2482 5 2005 6609 13616 0.00 20225	0.31 107 0.69 0.31 on resu. 2010 389 0.02 1306 456 0.01 2151 413 -0.01 1315 469 -0.00 2198 2010 6786 10455 0.27 -17241	0.31 113 0.69 0.31 1ts. Tot 2015 340 -1.02 1212 466 -0.25 2016 388 -0.01 1225 499 -0.00 2112 2015 6575 9211 -11.1 15775	0.33 118 0.67 0.33 cal for 2020 225 -3.80 1045 370 -0.95 -1635 305 -2.34 1083 428 -0.59 -1814 2020 5891 6765 -41.6 -41.6	0.51 123 0.49 0.51 all four 2030 66.9 -14.3 541 281 -3.57 871 73.2 -5.59 683 333 -1.40 1082 2030 2620 3669 -156 6133	countries
Trains and ships Stronger growth: Total Vans and trucks Trains and ships Summary of fuel and CO2 Fossil fuels Scenario B: Coal, int. Coal, ext. Oil Natural gas, int. Natural gas, int. Natural gas, int. Coal, ext. Oil, int. Natural gas, int. Natural gas, int. Natural gas, ext. Total CO2 emission 10.000 ton Scenario B: Transportation Stationary units, int. Stationary units, ext. Total	0.30 100 0.70 0.30 PJ 2005 600 0.00 1458 424 0.00 2482 600 0.00 1458 424 0.00 2482 5 2005 6609 13616 0.00 20225	0.31 107 0.69 0.31 on resu. 2010 389 0.02 1306 456 0.01 2151 413 -0.01 1315 469 -0.00 2198 2010 6786 10455 0.27 -17241	0.31 113 0.69 0.31 1ts. Tot 2015 340 -1.02 1212 466 -0.25 2016 388 -0.01 1225 499 -0.00 2112 2015 6575 9211 -11.1 15775	0.33 118 0.67 0.33 cal for 2020 225 -3.80 1045 370 -0.95 -1635 305 -2.34 1083 428 -0.59 -1814 2020 5891 6765 -41.6 -41.6	0.51 123 0.49 0.51 all four 2030 66.9 -14.3 541 281 -3.57 871 73.2 -5.59 683 333 -1.40 1082 2030 2620 3669 -156 6133	countries
Trains and ships Stronger growth: Total Vans and trucks Trains and ships Summary of fuel and CO2 Fossil fuels Scenario B: Coal, int. Coal, ext. Oil Natural gas, int. Natural gas, int. Natural gas, ext. Total Stronger growth: Coal, int. Natural gas, int. Natural gas, ext. Total CO2 emission 10.000 ton Scenario B: Transportation Stationary units, int. Stationary units, ext.	0.30 100 0.70 0.30 PJ 2005 600 0.00 1458 424 0.00 2482 600 0.00 1458 424 0.00 2482 5 2005 6609 13616 0.00 20225	0.31 107 0.69 0.31 on resu. 2010 389 0.02 1306 456 0.01 2151 413 -0.01 1315 469 -0.00 -2198 2010 6786 10455 0.27 17241 6786 10835 -0.11	0.31 113 0.69 0.31 1ts. Tot 2015 340 -1.02 1212 466 -0.25 2016 388 -0.01 1225 499 -0.00 2112 2015 6575 9211 -11.1 15775 6595 9967 -0.06	0.33 118 0.67 0.33 cal for 2020 225 -3.80 1045 370 -0.95 1635 305 -2.34 1083 428 -0.59 1814 2020 5891 6765 -41.6 12615 6052 8036 -25.6	0.51 123 0.49 0.51 all four 2030 66.9 -14.3 541 281 -3.57 871 73.2 -5.59 683 333 -1.40 1082 2030 2620 3669 -156 6133 3516 4175 -61.1	countries

Table 19.	CO ₂ emission reductions in the B-scenario												
						B-scenario: Emission	B-scenario: C	Change compar	ed with 1990				
	emission Mio. tons	2008-2012	2008-2012 Mio. tons	in 2010 Mio. tons	2020 Mio. tons	in 2020 Mio. tons	2010	2020	2030				
Norway	27.0	+ 1%	27.3	26.5	18.9	23.6	0%	- 13%	- 42%				
Sweden	50.0	- 4%	48.0	46.2	35.0	34.2	- 4%	- 32%	- 67%				
Finland	57.5	- 0%	57.5	57.4	40.3	38.4	0%	- 33%	- 76%				
Denmark	50.6	- 21%	40.0	42.0	35.4	30.2	- 17%	- 40%	- 67%				
Total	185	- 6.7%	173	172	130	126	- 7%	- 32%	- 67%				

The emissions shown in table 19 are the total emissions from chimneys and vehicle exhaust pipes, except emissions from oil and gas platforms, oil refineries, and international air transport.

For each of the four countries, the 1990-reference values refer to the country's "Third National Communication on Climate Change".

Although the EU agreements on reduction obligations allow Sweden to increase its emission by 4% by 2008-2012, Sweden has set a 4% national reduction target.

The emission reduction target for 2020 (70% of the 1990 reference emission) refers to the aim to keep the average global temperature increase below a ceiling 2 degrees above the pre-industrial level, see section 15.